图11. 杠杆保持平衡.图片来源:文献[1]
当 A 代表地球时,只要 B 到支点的距离 b足够大,那么杠杆就可以保持平衡,此时,阿基米德也就撬起了地球.当然这是一个玩笑. 言归正传,阿基米德为了求 ,先将公式(2)两边同时乘以长度 AB,得到
设涉及到的所有的材料密度是1 .那么我们就有下面的公式
这条公式是涉及到质量和长度的乘积的一个等式,仔细观察就可以联想到,这其实是一个体现力矩平衡的表达式! 这是阿基米德的天才发现.观察等式(3)右边的表达式 ,它是某个圆柱对支点产生的总力矩.让我们看图12,那个圆柱可以这样构造:让圆柱的一端放在支点,另一端与支点的距离恰好为 AB 的长度,而且让圆柱的地面半径也恰好是 AB的长度.则圆柱对支点产生的总力矩就是 .
图12.图片来源:文献[1],稍作了修改
事实上,在圆柱的侧面边缘上取一点 X,经过 X 作一个薄片平行于圆柱底面,则薄片的面积为 ,薄片的厚度是无穷小量 ,于是薄片的体积是 .又因为材料的密度是1 ,所以薄片的质量也是 .且薄片与支点的距离是AX,所以薄片对支点产生的力矩是 .将所有薄片对支点产生的力矩求和,就得到圆柱对支点产生的力矩 .
换一个角度看,也可以这样计算圆柱对支点产生的力矩:把圆柱的所有质量集中在圆柱的中心,质量中心与支点的距离是.这个时候质量中心对支点产生的力矩,就是整个圆柱对支点的力矩.由于圆柱的底面半径是容纳球的最小圆柱的底面半径的2倍,高相等,所以圆柱的质量是容纳球的最小圆柱的质量的4倍.所以(3)式变为
当然,为了体现出力矩互相抵消的关系,我们在图12,支点的左边距离支点AB的地方放上了我们构造出来的圆锥和想要求出体积的球体,等式(3)和等式(4)成立意味着图12的杠杆保持平衡.
最后,消去等式(4)中的AB ,可以解得
这一切都被阿基米德记载在他的著作 力学定理的方法中.这是阿基米德差点失传的著作,直到1906年才被人从一本羊皮书中发现,书中阿基米德的文字已经被人擦掉,用其它文字覆盖了.后来人们用各种高科技,比如X光线照射,重新显现出了阿基米德的文字.
图13.《力学定理的方法》.图片来源:网站[3]
正如微积分溯源 的作者 Bressoud 指出的,
《力学定理的方法》是阿基米德写给同时代的数学家埃拉托斯特尼的书, 里面阐述了计算面积、体积和力矩的方法.书中展示了积分学的核心思想, 包括对无穷小量的运用, 只不过阿基米德在书写形式证明的时候隐藏了这些想法.
只要数学继续存在,阿基米德在求解数学问题中体现出来的创造力将永远流传下去,阿基米德是永恒的数学家.我的分享就到这里.谢谢大家.
参考文献:
[1] David M.Bressoud 著;陈见柯、林开亮、叶卢庆译. 微积分溯源——伟大思想的历程. 北京:人民邮电出版社, 2022.11.
[2]Science Photo Library:https://www.sciencephoto.com/media/1194141/view
[3]https://www.theguardian.com/books/2011/oct/26/archimedes-palimpsest-ahead-of-time
《微积分溯源:伟大思想的历程》
作者:戴维·M.布雷苏
翻译:陈见柯 林开亮 叶卢庆
出版社:人民邮电出版社
出版时间:2022-11