任意数和零的区别,一和零的主要区别

首页 > 经验 > 作者:YD1662024-01-01 23:17:55

任意数和零的区别,一和零的主要区别(5)

Ⅴ.把带分数拆分后再结合(先拆分后结合)

任意数和零的区别,一和零的主要区别(6)

Ⅵ.分组结合

2-3-4 5 6-7-8 9… 66-67-68 69

原式=(2-3-4 5) (6-7-8 9) … (66-67-68 69)

=0

Ⅶ.先拆项后结合

(1 3 5 7… 99)-(2 4 6 8… 100)

1.4有理数的乘除法

1.有理数的乘法法则

法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;("同号得正,异号得负"专指"两数相乘"的情况,如果因数超过两个,就必须运用法则三)

法则二:任何数同0相乘,都得0;

法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

法则四:几个数相乘,如果其中有因数为0,则积等于0.

2.倒数

乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

注意:①0没有倒数;

②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

④倒数等于它本身的数是1或-1,不包括0。

3.有理数的乘法运算律

⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba

⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).

⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b c)=ab ac

4.有理数的除法法则

(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

5.有理数的乘除混合运算

(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照'先乘除,后加减'的顺序进行。

1.5 有理数的乘方

1.乘方的概念

求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在  中,a 叫做底数,n 叫做指数。

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

3.有理数的混合运算

做有理数的混合运算时,应注意以下运算顺序:

(1)先乘方,再乘除,最后加减;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

4.科学记数法

把一个大于10的数表示成的形式(其中, n是正整数),这种记数法是科学记数法。

第二章 整式的加减

2.1整式

代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n 500,abc。单独的一个数或一个字母也是代数式。

单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

单项式的系数:单项式中的数字因数

单项式的次数:一个单项式中,所有字母的指数和

多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。

整式:单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

代数式书写规范:

1数与字母、字母与字母中的乘号可以省略不写或用"·"表示,并把数字放到字母前;

2出现除式时,用分数表示;

3带分数与字母相乘时,带分数要化成假分数;

4若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

2.2整式的加减

1合并同类项

同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

2去括号的法则

(1)括号前面是" "号,把括号和它前面的" "号去掉,括号里各项的符号都不变;

(2)括号前面是"—"号,把括号和它前面的"—"号去掉,括号里各项的符号都要改变。

3整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。

整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项。

第三章 一元一次方程

3.1一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。一般形式:ax b=0(a≠0)

注意:未知数在分母中时,它的次数不能看成是1次。如1/x 3=x,它不是一元一次方程。

3.2解一元一次方程

方程的解:能使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;

(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。

移项

移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。

移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。

移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。

注意:移项时要跨越"="号,移过的项一定要变号。

解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1。

注意:去分母时不可漏乘不含分母的项。分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。

任意数和零的区别,一和零的主要区别(7)

3.3方程解决问题

列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。关键在于抓住问题中的有关数量的相等关系,列出方程。

解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系

实际问题的常见类型:

行程问题:路程=时间×速度,时间=路程/速度,速度=路程/时间

(单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时)

工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和

利润问题:利润=售价-进价,利润率=利润/进价,售价=标价×(1-折扣)

等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积

利息问题:本息和=本金 利息;利息=本金×利率

第四章 几何图形初步

4.1几何图形

1.立体图形与平面图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

任意数和零的区别,一和零的主要区别(8)

上一页1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.