「序」
上期EV焦点栏目 我们聊了聊电动汽车为什么要上800V,也大致了解了SiC和800V互相成就的关系。今天这期,我们相对放大一下,聊聊SiC在电动汽车上的应用。
在汽车电动化的驱动下,电力电子器件可谓是量价齐升。而电力电子器件的发展经历了以晶闸管为核心的第一阶段、以MOSFET和IGBT为代表的第二阶段,现在正在进入以宽禁带半导体器件为核心的新发展阶段。
而新一代电力电子器件也同时在推动MOSFET和IGBT的发展,这也带动SiC和GaN等宽禁带半导体的日益普及。
电动汽车则成为了碳化硅的核心应用场景。因此,这期「EV焦点」栏目,我们将再次以电动汽车为焦点,逐步和大家聊聊SiC在电动汽车中的应用趋势。
我们先通过电动汽车内部电能的流动,了解一下新能源汽车电动化的框架。
「新能源汽车电动化的框架」
首先我们要先知道给动力电池充电的两种方式。
一种是通过 “快充”口,利用外来的“直流充电桩”直接给动力电池充电;另一种是将电网的交流供给车辆内部的车载充电机(OBC),OBC转换为直流电。两者对于动力电池pack而言是进入同一个接口,只是充电电流大小不同。
电动汽车电能应用分两个方向,一个用于汽车驱动,另一个则用于车身/辅助系统
在驱动端,电能依次流经外部充电设备、车载充电机OBC(当然,只有如上面说的那样,输入为交流电流时使用)、接着到电池、逆变器、电机电控、减速箱、车轮,同时通过电池管理系统进行能量管理;
在车身及辅助系统端,电能从电池处流出,经过DC-DC转换器、低压电池、辅助系统。
「SiC在EV中的应用发展」
那么,SiC在其中又呈现怎样的发展格局?
SiC器件要比Si器件有着更低的导通损耗、更高的工作频率和更高的工作电压等等这些优势这边就不再赘述了。
考虑到未来电动车需要更长的行驶里程、更短的充电时间和更高的电池容量,在车用半导体中,SiC将会是未来趋势,SiC 器件在 EV/HEV 上的应用主要包括电机驱动系统逆变器、电源转换系统(车载DC/DC)、电动汽车车载充电系统(OBC)及非车载充电桩等方面。