贝叶斯公式由浅入深大讲解,贝叶斯公式的经典例题及讲解

首页 > 经验 > 作者:YD1662024-03-22 15:54:18

1 贝叶斯方法

长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X 的变化而变化。

这种频率派的观点长期统治着人们的观念,但是:

贝叶斯公式由浅入深大讲解,贝叶斯公式的经典例题及讲解(1)

假设我们有如下的7个球在A,B两个框中,如果我们随便取一个球,已知取到的球来自B框中,那么这个球是白球的概率是多少呢?或者问去除的球是白色,那么取自B框的概率是多少呢?这个问题不是很好解决,直到后来一个名叫Thomas Bayes的人物出现。

1.1 贝叶斯方法的提出

托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版著作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。

贝叶斯公式由浅入深大讲解,贝叶斯公式的经典例题及讲解(2)

事实上,上篇论文发表后,在当时并未产生多少影响,在20世纪后,这篇论文才逐渐被人们所重视。对此,与梵高何其类似,画的画生前一文不值,死后价值连城。

回到上面的例子:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是贝叶斯式的思考方式。

继续深入讲解贝叶斯方法之前,先简单总结下频率派与贝叶斯派各自不同的思考方式:



相对来说,频率派的观点容易理解,所以下文重点阐述贝叶斯派的观点。

贝叶斯派既然把θ看做是一个随机变量,所以要计算θ的分布,便得事先知道θ的无条件分布,即在有样本之前(或观察到X之前),θ有着怎样的分布呢?

比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为先验分布,或的无条件分布。

至此,贝叶斯及贝叶斯派提出了一个思考问题的固定模式:

先验分布 π(θ) 样本信息χ⇒ 后验分布π(θ|x)

上述思考模式意味着,新观察到的样本信息将修正人们以前对事物的认知。换言之,在得到新的样本信息之前,人们对的认知是先验分布 π(θ),在得到新的样本信息后χ,人们对θ的认知为π(θ|x)。

而后验分布π(θ|x)一般也认为是在给定样本χ的情况下θ的条件分布,而使达到最大的值称为最大后θMD验估计,类似于经典统计学中的极大似然估计。

综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断是观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

此外,贝叶斯除了提出上述思考模式之外,还特别提出了举世闻名的贝叶斯定理。

1.2 贝叶斯定理

在引出贝叶斯定理之前,先学习几个定义:

接着,考虑一个问题:P(A|B)是在B发生的情况下A发生的可能性。

贝叶斯定理便是基于下述贝叶斯公式:

贝叶斯公式由浅入深大讲解,贝叶斯公式的经典例题及讲解(3)

P(A|B)=P(B|A)P(A)/P(B)

上述公式的推导其实非常简单,就是从条件概率推出。

根据条件概率的定义,在事件B发生的条件下事件A发生的概率是

P(A|B)=P(A∩B)/P(B)

同样地,在事件A发生的条件下事件B发生的概率

P(B|A)=P(A∩B)/P(A)


整理与合并上述两个方程式,便可以得到:

P(A|B)P(B)=P(A∩B)=P(B|A)P(A)

接着,上式两边同除以P(B),若P(B)是非零的,我们便可以得到贝叶斯定理的公式表达式:

P(A|B)=P(B|A)*P(A)/P(B)


笔者在看《从贝叶斯方法谈到贝叶斯网络》的时候,看到这里,其实已经晕晕的了。

P(A|B) 和 P(B|A) 之类的经常让人混淆,@待字闺中的陈老师给出了理解的一个关键点,区分出规律和现象,就是将A看成“规律”,B看成“现象”,那么贝叶斯公式看成:

贝叶斯公式由浅入深大讲解,贝叶斯公式的经典例题及讲解(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.