胡克定律为什么是近似的,胡克定律图像为什么不过原点

首页 > 经验 > 作者:YD1662024-03-24 07:43:06

胡克定律的表达式为F=k·x或△F=k·Δx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。

弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -k·x。k是物质的劲度系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。

材料力学和弹性力学的基本规律之一。由R.胡克于1678年提出而得名。胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:

σ11=λ(ε11 ε22 ε33) 2Gε11,σ23=2Gε23,

σ22=λ(ε11 ε22 ε33) 2Gε22,σ31=2Gε31,(1)

σ33=λ(ε11 ε22 ε33) 2Gε33,σ12=2Gε12,及

式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列* 式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。

根据无初始应力的假设,(f 1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数 f 1 对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为

上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。

广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。

如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。

但是如果物体是由均匀材料构成的,那么物体内部的各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。

这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。

胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的伸长变化量x成正比,即F= kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

胡克定律为什么是近似的,胡克定律图像为什么不过原点(1)

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.