注意:
(1)字母不一定是正数.
(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.
知识点 最简二次根式和同类二次根式
(1)最简二次根式:
☆最简二次根式的定义:
①被开方数是整数,因式是整式
②被开方数中不含能开得尽方的数或因式,分母中不含根号
☆同类二次根式(可合并根式):
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式
知识点 二次根式计算——分母有理化
(1)分母有理化
定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下:
①单项二次根式:
利用下列式子来确定 ,如下,分别互为有理化因式。
②两项二次根式:
利用平方差公式来确定。如下列式子,互为有理化因式
(3)分母有理化的方法与步骤:
①先将分子、分母化成最简二次根式;
②将分子、分母都乘以分母的有理化因式,使分母中不含根式;
知识点 二次根式计算——二次根式的乘除
(1)积的算术平方根的性质
积的算术平方根,等于积中各因式的算术平方根的积。