线性代数(linear algebra)是大学理工科学生必学的三门数学主科之一,主要的内容是线性方程组,向量,矩阵,行列式及其关系与性质。但是国内高校所选取的线性代数教材死板而生硬,老师的课也一般讲得枯燥而乏味。很多学生不仅学起来索然无味,学完之后也不理解概念的本质是啥,学它又能用来干什么。但其实,线性代数在工程,经济,统计,社会学等领域有着非常重要的应用,国外的线性代数就生动很多,会介绍很多它在各个方面的应用。本篇文章就来带领大家看一看,国外的教材是如何讲线性代数的,线性代数在这个五彩斑斓的社会中有着哪些应用。
本文的内容取材于美国马里兰大学David C. Lay等人所著的《Linear Algebra and Its Application》(《线性代数及其应用》)
教材封面
2、投入-产出模型与均衡价格在在经济学里面我们最常面临的一个问题就是,对于一家企业来讲,如何给自己的产品定价?定价太低则弥补不了成本,定价太高又会影响消费,而当市场上有很多企业时,他们胡乱定价则会扰乱整个经济体的秩序。那么各个企业如何给自己的产品定价才能够保证市场良性且持久的发展呢?
为了解决这个问题,美国经济学家,哈佛大学教授列昂惕夫(Leontief, 1906~1999)研究了所谓的投入产出分析方法,并于1973年获得诺贝尔经济学奖,我们来介绍一种最简单的模型。
列昂惕夫(1906-1999)
假设一个封闭市场只有三家企业,发电厂(Electric),炼钢厂(Steel)和挖煤厂(Coal)。每一家工厂都需要从另外两家工厂购买原料,然后生产出产品再卖给另外两家工厂。比如发电厂需要从炼钢厂购进钢铁,从挖煤厂购进煤炭,利用它们发出来的电一部分卖给炼钢厂,一部分卖给挖煤厂,还有一部分留给自己用。而炼钢厂和挖煤厂也是如此。
三者之间的这种相互关系可以用表格来描述:
投入产出表
每一数列表示了每个工厂生产的产品,按照什么样的比例卖给三个工厂。比如第一列表示的意思就是:挖煤厂生产出来的煤炭,0%留给自己,60%卖给发电厂,40%卖给炼钢厂。第二列表示的意思就是发电厂发出来的电,40%卖给挖煤厂,10%留给自己用,50%卖给炼钢厂。第3列表示的意思是:炼钢厂炼出来的钢铁60%卖给挖煤厂,20%卖给发电厂,20%留给自己用。他们之间的关系用一幅图来表示则更为清晰