其反变换为:

前文说傅立叶变换本质上也是一种连续函数的积分变换,那么从上面公式,可以看出傅立叶变换的核函数为:

其核函数的两个自变量为t, ,对于一般称为角速度(可以形象的理解为旋转运动的快慢),是表征频率空间的。
上面这两个公式是啥意思呢?在度量空间可积可以理解成其在度量空间能量有限,也即对其自变量积分(相当于求面积)是一个确定值,那么这样的函数或者信号就可以进行傅立叶变换展开,展开得到的就变成是频域的函数了,如果对频率将函数值绘制出曲线就是我们所说的频谱图,而其逆变换就比较好理解了,如果我们知道一个信号或者函数谱密度函数,就可以对应还原出其时域的函数,也能绘制出时域的波形图。
傅立叶变换公式,从理解的角度,可以看成无限多无穷小的能量之和,而傅立叶级数也是各谐波分量的加和,所不同的是,前者相对于频率变量是连续的,而后者相对于频率则是离散的!

当然,本文限定讨论时域信号是因为我们电子系统中的应用最为普遍的就是一个时域信号。推而广之,其他的多维度信号也能利用上面定义进行推广,同样在多维空间信号也非常有应用价值,比如2维图像处理、3维图像重建等等。
傅立叶级数与变换的区别?
傅立叶级数对应的是周期信号,而傅立叶变换则对应的是一个时间连续可积信号(不一定是周期信号)
傅立叶级数要求信号在一个周期内能量有限,而后者则要求在整个区间能量有限
傅立叶级数的对应是离散的,而傅立叶变换则对应是连续的。
故而,两者的物理含义不同,且其量纲也是不同的,代表周期信号的第k次谐波幅度的大小,而则是频谱密度的概念。所以答案是这两者从本质上不是一个概念,傅立叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它是不同的频率的波形的时域叠加。
而傅立叶变换则是完全的频域分析,傅里叶级数适用于对周期性现象做数学上的分析,傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。
,