预防性疫苗并不是要对每个人都有效才能发挥作用,它更大的价值在于,通过加速群体免疫的形成来阻止传染病的扩散,以此来保护那些免疫力低下的人。
主笔 | 袁越
寻找疫苗
早期的疫苗研发速度非常慢,因为科学家们对免疫系统的工作原理了解不多,只能遵循已有的成功案例,满世界寻找合适的病原体作为制造疫苗的原材料。
人类找到的第一种疫苗原材料是牛痘病毒,它本质上是一种减活疫苗,即用毒性减弱的活病毒去感染健康人,希望能激发出针对强毒性病原体(天花)的免疫力。由于牛痘疫苗的成功,此后相继出现的狂犬病疫苗、破伤风疫苗、霍乱疫苗、腺鼠疫疫苗和猩红热疫苗等等都沿用了这一思路。
牛痘是天然存在的病毒,这就相当于大自然为我们进行了毒性弱化的筛选,詹纳医生只需要大着胆子为病人接种就行了。但后续出现的那些减活疫苗都不是天然存在的,而是科学家们用病原体去感染其他动物,然后一代一代地筛选出来的。这个过程不但很费时间,而且不能保证一定成功,所以这段时期新疫苗的研发速度极慢,一款疫苗耗时几十年是常事。
法国士兵在接种牛痘疫苗
比如,小儿麻痹症是一种很古老的传染病,但第一款减活疫苗直到上世纪40年代才由美国科学家希拉里·科普罗夫斯基(Hilary Koprowski)研制成功,原因就在于导致小儿麻痹症的脊髓灰质炎病毒通常只感染人类,科学家显然没办法用人来做筛选。好在科普罗夫斯基发现一种源自美洲的棉鼠(Cotton Rat)也可以感染这种病毒,这才终于解决了这个问题。
上世纪50年代才终于成熟起来的细胞培养技术为减活疫苗的研发提供了新的工具,从此科学家们可以通过体外培养的细胞系来筛选毒株了,这就大大节省了研发成本,大家熟悉的麻疹、腮腺炎、风疹三联疫苗(MMR)就是通过这个方法研制成功的。减活疫苗本身是活的,可以在接种者体内不断增殖,所以减活疫苗具有免疫原性强、持续时间久、制备相对容易、接种方法相对简单等优点。但也正因为用的是活病原体,减活疫苗有可能因为基因突变而重新获得毒性,前文提到的脊髓灰质炎减活疫苗就是如此。另外,减活疫苗只适合基因组相对简单的病毒,如果病原体是细菌或者其他更复杂的寄生虫,这个方法就不太适用了,因为谁也无法确定它们会突变成什么样子,危险系数太高。
美国科学家希拉里·科普罗夫斯基,他研制成功了第一款对抗小儿麻痹症的减活疫苗
此时就要用到灭活疫苗,即采用物理或者化学的方法将病原体*死,再将其制成疫苗,希望这些病原体的“尸体”也足以骗过人体免疫系统,诱导出强烈的免疫反应。最早的灭活疫苗是1924年研制成功的破伤风疫苗,但这款疫苗并不典型,因为破伤风之所以会让人得病,原因不是破伤风梭菌本身,而是这种细菌所分泌的毒素。因此这款疫苗不是用破伤风梭菌的尸体制成的,而仅仅是一种毒性较弱的毒素而已,它只要激发出人体对这种毒素的免疫反应就行了,不需要*死破伤风梭菌。
美国科学家乔纳斯·索尔克(Jonas Salk)研制成功的脊髓灰质炎疫苗才是真正意义上的灭活疫苗,他用细胞培养的方式生产出了大量活病毒,然后用福尔马林将其*死,制成了第一批灭活脊髓灰质炎疫苗。表面上看,这个方法非常安全,起码不用担心基因突变导致疫苗恢复毒性,但实际上这个方法也存在一定的风险,如果病原体没有被彻底*死的话,后果将是灾难性的。事实上,美国就曾经发生过脊髓灰质炎疫苗灭活不彻底而导致的悲剧,被反疫苗运动者抓住了把柄,差点就让全球消灭小儿麻痹症运动毁于一旦。
不过,灭活疫苗最大的问题是免疫原性太弱。因为疫苗本身是死的,不但生物活性低,而且进入人体后很快就会被降解,从而失去激发免疫系统的能力,所以灭活疫苗往往需要接种好几次,对疫苗的需求量较大,成本也较高。正因为如此,灭活疫苗上市前必须经过大规模长时间的临床试验,确定这种疫苗真的管用,并摸索出一套可靠的接种方案。实践证明,灭活疫苗不仅需要接种好几次,而且还经常需要在疫苗中添加佐剂来增加免疫反应的强度,这就进一步增加了疫苗的成本。另外,佐剂的安全性也有待考察,这一点后来也被反疫苗运动者所利用,成为攻击疫苗的靶子。
还有一点值得一提,那就是灭活疫苗必须采用皮下注射的方法进行接种,操作起来比较麻烦,这就是为什么世卫组织最终选择了口服减活疫苗作为全球消灭小儿麻痹症运动的主力疫苗。
美国科学家乔纳斯·索尔克给一名儿童接种脊髓灰质炎疫苗
总之,减活疫苗和灭活疫苗是预防性疫苗的两个最常见的类型,迄今为止绝大部分已上市的疫苗都属于这两类。这两种疫苗都需要事先生产出大量病毒,因此寻找合适的病毒宿主就成了科学家们最头痛的问题。所幸日本千叶大学的科学家于1962年从绿猴的肾细胞中培养出了Vero细胞系,这才部分地解决了这个问题。Vero细胞天生没有分泌干扰素的能力,非常适合用来作为生产病毒的宿主。广为人知的“新冠疫苗六杰”当中,由国药集团武汉生物制品研究所、国药集团北京生物制品研究所和北京科兴中维生物技术有限公司研发的灭活疫苗都是用Vero细胞作为宿主生产出来的新冠病毒制成的。这3家企业一开始就进展神速,关键就在于他们曾经用Vero细胞系培养过“非典”(SARS)病毒,积累了丰富的经验。
灭活疫苗和减活疫苗虽然工作原理比较清楚,研发过程的技术含量也相对较低,但疫苗生产一直是个瓶颈。尤其是灭活疫苗,需要的病毒量非常大,所以产能一直是这类疫苗的最大问题。比如常用的流感疫苗都是灭活疫苗,目前所能找到的最好的流感疫苗宿主就是鸡蛋,而每只鸡蛋只能生产出一人份的流感疫苗,大家简单算一下就会知道流感疫苗的推广难度究竟在哪里了。事实上,很多国家的防疫部门都有自己的专属养鸡场,每个流感季都必须提前半年开始准备鸡蛋才能满足当季的接种需要。假如新冠疫苗也只能靠鸡蛋来生产的话,恐怕我们真的得等10年之后才能用得上了。
所幸科学家们一直在默默努力着,新一代疫苗早已今非昔比了。
设计疫苗
疫苗领域的真正突破,是从科学家们搞清了抗原抗体反应的基本原理之后才开始的。
除了少数细菌的表面抗原属于多糖之外,已知的绝大部分抗原都是蛋白质,而每一种蛋白质都会按照自己独特的氨基酸顺序而折叠成一个独一无二的三维结构。由B型淋巴细胞分泌的抗体同样是蛋白质,能够和抗原形成独一无二的互补关系,类似于一把钥匙开一把锁,抗原抗体就是这样一对一地绑在一起的。
世界上现有的蛋白质种类加起来至少有10的15次方那么多,也就是亿亿级别。当一种外来蛋白质进入人体之后,B细胞都会在1~2周内生产出专门针对它的抗体,它们是如何做到这一点的呢?这个问题困扰了科学家很多年,直到上世纪50年代末期才由一位名叫麦克法兰·伯内特(Macfarlane Burnet)的澳大利亚病毒学家给出了答案。
免疫系统的诸多特性都非常反直觉,这个答案同样如此。一般人都会认为,每一把“抗原锁”入侵人体后都会被免疫系统用作模板,指导B细胞生产出专门针对它的“抗体钥匙”。这个理论统治了科学界40多年,因为大家都认为只有这样才能解释人体为什么会对自己从来没有见过的抗原也能立即产生抗体。
伯内特却相信每个成年人体内都早已存在着一个包含亿亿把不同类型抗体的“钥匙库”,足以应对自然界现存的所有类型的“抗原锁”。每当一种新的抗原进入人体后,免疫系统就会从“抗体钥匙库”里调出抗体挨个进行配对尝试,直到找出正好匹配的那个抗体,然后被选中的这个抗体便开始疯狂地复制(克隆)自己,生产出一支专门对付这个入侵抗原的单克隆抗体军团,迅速将其歼灭。
换句话说,抗体不是B细胞根据抗原的样子设计生产出来的,而是抗原从人体内已有的抗体库里挑选出来的。伯内特凭借这个相当反直觉的“克隆选择学说”(Clonal Selection)获得了1960年的诺贝尔生理学或医学奖,疫苗研发也随着该学说的确立而开始腾飞。