不得不说非牛顿流体现在这个概念真的非常深入人心,邻居家 8 岁的小孩都知道能用口香糖戳穿椰子…… 但其实非牛顿流体有很多种,上面这种的特征是施加一定应力以后,流体黏性变大,会变得越硬;也有本来很硬,但是施加应力后会变软的,比如我们平时涂的各种护肤品,越搓就会越像水。蛋白霜则是属于很多人不知道的第三类非牛顿流体,宾汉流体。
宾汉流体是 1922 年宾汉(E.C. Bingham)最早提出的。它的典型特征是在不施加应力的情况下,几乎静止不动,而在施加一定应力以后则表现出很强的流动性。我们做蛋糕的时候用到的奶油、蛋白霜都是宾汉流体,生活中更常见的牙膏也是宾汉流体。
回到蛋糕上,制作戚风蛋糕时候打发蛋白至恰好合适的一个标准,就是整个盆子倒扣,里面的蛋白霜不会流动,提起打蛋器的头,蛋白呈直角三角形。这不是别的,就是宾汉流体啊 (:з」∠) 所以下次作蛋糕不成功的话,剩下来的原料别急着扔,不如录一个科普小视频(然后再那去馋隔壁家的小孩
在利用电动打蛋器打发蛋白的时候,教程里都会写 先用低档打至鱼眼泡以后,再加入糖逐步提高转速档位。基本没有人会在这里专门划一个重点,但这都是血与泪的教训啊…… 一开始就开高档的人,打蛋器伸下去可能就不剩多少蛋白了。
开头水龙卷的例子上,在我们转动液体的时候,由于惯性的影响,液体其实更多地会被甩飞从而附着在杯壁上。但是假如你有过用电动打蛋器打发的经历的话,在打发到后期的时候,虽然看上去电动打蛋器转动地十分轻松写意,但真的用人手去搅动蛋白霜其实会感受到很大的阻力。这就是说明宾汉流体,我们的蛋白霜成型了。而高档转动蛋白霜都不会让它甩飞到杯壁上再下流,其实正是来自于非牛顿流体的一个奇妙性质 —— 韦森堡效应,也叫包轴效应(Weissenberg effect)。
因为宾汉流体黏性会随着剪切应力的大小发生变化,所以在中间棒棒转动的带动下,流体没有因为惯性被甩飞,反而沿着转动的杆变成了向上爬升。注意看 gif 图片转动轴的底端的话,其实可以看到整个实验过程并没有把转动轴提起来,完全是流体自身的特性导致的。在打蛋器上其实也可以经常看到乳白色的蛋白霜沿着杆子往上爬。爬得越成功,说明你蛋白打得也就越好。
#一蛋糕功成,万蛋糕糊哭
最后终于来到了我们的烤制环节,其实烤制这一块能说的不算太多,因为电饭煲和烤箱比起来,真的差的太远了。我们从热量传递的几个过程来看,传导辐射对流。在电饭煲里面,加热只能通过下面那个锅接触传导热量来实现,热量分布十分不均匀,可能中间的蛋糕糊根本还没加热多久,下面的蛋糕都快要焦了。
反观烤箱的话,作为烤箱的基本功能,上下加热管能单独调节温度是必须的,而且烤箱越大,内部的温度分布越均匀。在这里就不提可怜的电饭煲了,我们普通家用的烤箱都可以买到几十升的容量了,更别提专业的面包房里烤箱长度都是用米来计算的。
而且更要命的是电饭煲的温湿度控制和烤箱相比也根本没法比,做蛋糕是个精细活,随便翻开一本专门讲烘焙的书,列举导致蛋糕最终味道不对形状不好的可能原因都有巨长无比的一串。温度没控制好,太高了气体还没膨胀呢结果蛋白质先凝固了,最后做出来的蛋糕不够蓬松表面还都裂开了;温度低了,蛋白质凝固的太慢了,结果蛋糕都塌了。
#最后结论
做不如买,买不如吃