投影变化前后,小块的面积不变
那么,算个球的表面积 S球= S筒 = 2πr*2r = 4πr2。
祖暅原理
祖暅原理又叫 Cavalieri’s Principle(卡瓦列里原理),因为卡瓦列里在17世纪提出了类似的等积原理,用于复杂几何领域,但实际上祖暅的发现比他早了1100年。
“幂势既同,则积不容异”这句话就出自于祖暅。如果你对高中数学课本有印象,也许记得这里的“幂”指体积,“势”则为高度。意思就是:高度相同的物体,如果每个剖面面积也一样,它们的体积就相等。
祖暅原理的提出本是为了解决计算牟合方盖的体积问题,从而算球的体积。但现在更加常见的用法是下面这样:
图中球的体积等于圆柱去掉两个圆锥的体积,原因就是它们每个剖面的面积都相等。有兴趣的小伙伴可以用半球为例,试着计算。
利用上图很容易发现,在高度是 h 的地方,球的截面积是:π*(r2-h2),而圆柱减去圆锥的截面积是:πr2(圆柱截面)-πh2(圆锥截面),它们正好相等。
于是,算个球问题一下变成了算圆柱和圆锥的体积问题。
算个球的体积!
了解了祖暅原理,我们就可以绕过微积分,直接算球了!
由祖暅原理,半球的体积经过我们巧妙的转化,成了用圆柱和圆锥的体积来表示。
众所周知,圆柱体积是圆面积和高度相乘,V圆柱= πr2*r = πr3。而圆锥的体积,假如你不知道,查阅资料会发现 V圆锥= πr3/3,正好是圆柱的三分之一。
好奇宝宝也许会问,三分之一是怎么来的?既然你诚心诚意的问了,祖暅会大发慈悲的为你解答。
我们还是逮住之前的那个圆锥(截面面积是πh2),然后把烦人的 π 除去,截面积就成了 h2。那么谁的截面积是用 h2 表示呢?答:边长和高度都是 r 的四棱锥。
a. 除去 π 后,圆锥变成了四棱锥(平视图)