suv倒车技巧左右距离图解,suv倒车入位技巧图解

首页 > 汽车 > 作者:YD1662022-12-02 06:46:45

2022 年,在智能汽车领域,几乎无人不谈「行泊一体」。

「行车和泊车共用同一个域控制器,实现传感器深度复用、计算资源共享,在提高用户智驾体验的同时,也帮助主机厂降本增效,大大提高了后者的开发效率……」这差不多是做「行泊一体」自动驾驶企业的惯用话术。

然而在实际中,该类型方案的表现却一言难尽,差别巨大。大部分所谓的行泊一体只是将硬件并到一个「盒子」里,功能并没有发生改变,用户体验也没有得到明显提升。

面对成效上的千差万别,甚至让人怀疑不同公司所说的「行泊一体」是否指的是同一件事情。

因此,一些行业人士根据长期的思考和实践提出了行泊一体的不同形态,以 1.0、2.0 甚至是 3.0 来区分不同方案在本质上的巨大差异,阐述各家的行泊一体为什么在功能、体验、硬件、成本等方面相去甚远。

suv倒车技巧左右距离图解,suv倒车入位技巧图解(1)

在这方面,量产自动驾驶方面的领先企业或许最具话语权。

近日,汽车之心在国内首个单 TDA4VM 行泊一体项目的开发交付现场,与 Nullmax 纽劢创始人兼 CEO 徐雷进行了深入的交流,梳理了当前行泊一体的量产进展。

这位硅谷职业背景的创业者,有着技术控们一贯的严谨,他把「行泊一体」分为 4 种形态,其中最高阶的 4.0 形态表现为一体化域控制器、单 SOC 系统,以及芯片、传感器持续深度复用且 NOA 功能不受限制

目前,Nullmax 是业内少数能提供行泊一体 4.0 方案的公司,其开发了覆盖不同算力的平台化行泊一体解决方案 MaxDrive,并将率先在 TDA4VM 芯片上完成一系列的量产交付。

01、从 1.0-4.0,鱼龙混杂的行泊一体

市面上现在大部分车型采用的仍然是分离式域控制器,即行车域控和泊车域控相分离,行车功能只能调用行车的芯片和传感器,比如前视相机、毫米波雷达,而泊车功能也只能调用泊车的芯片和传感器,比如鱼眼相机、超声波雷达。

这意味着,当一套系统运转时,另一套的硬件就会闲置。

这一情况,被徐雷称之为行泊一体 1.0 形态,不仅电子控制单元(ECU)数量最多成本也十分高昂

当中行泊一体的内涵,只是行车、泊车两套功能同时存在于一辆车上。

而 2.0 形态正是前文提到的将两块负责不同功能的 SoC(行车 SoC 泊车 SoC),「貌合神离」地集成在同一个域控制器上,典型如「1 颗 EyeQ4 1 颗 TDA4」或类似的双芯片组合方案,确实减少了一个域控制器,使硬件成本降低约 30%,但属于伪行泊一体架构,计算资源没有得到真正共享容易出现通讯延迟不利于数据的融合处理汽车智驾性能没有提高

行泊一体 3.0 形态更进一步,在减少域控制器的基础上,再减少一块芯片,直接上单 SoC 系统,使硬件成本降低 50%,但此时又容易出现一个新问题:

传感器无法深度复用功能局限于基础的 ADAS

也就是说,3.0 形态仍然只能开启部分传感器,仍有一部分传感器处于分时闲置的状态,因此在同样传感器下,其实还有更大的性能空间可以挖掘。

背后的原因在于有些自动驾驶公司,无法做到在一块算力有限的 SoC 上,处理行车和泊车过程中大量传感器同时输入的海量数据。

「这就导致在行车过程中只打开了前摄像头等传感器,泊车过程中也只使用例如鱼眼摄像头进行感知,行、泊在物理上看似一体,在功能上仍然是分离。」

真正的行泊一体不仅能省去部分重叠的硬件,节省成本,还能实现更高的性能。

suv倒车技巧左右距离图解,suv倒车入位技巧图解(2)

徐雷介绍,在路上行驶时,行车系统应该调用鱼眼相机,提升车身周围 360°的近距离感知能力,在拥堵跟车、cut-in 等情况下提高行车表现。举个例子,鱼眼能够用来检测车旁行驶区域的变化,这样当大卡车经过时,系统可以提前做出横向避让。

而在停车场内行驶时,系统也可以直接调用前视摄像头,提升车辆前向的感知能力,识别路上的障碍物,提高泊车过程中的行进速度,「比如达到 10 公里每小时以上。」

这些功能如果能在单 SoC 上做到,才能算达到了行泊一体 4.0 形态。

当中的挑战之大不言而喻,既要求自动驾驶企业深入了解自动驾驶的全流程,能够构建高效高性能的整体架构,还要具备强大的软件算法技术,尤其是工程化能力,完成整套方案的实际开发和落地

这也就意味着,4.0 形态的行泊一体实际上少之又少。

从交付进展上来看,能够像 Nullmax 一样完成全自研行泊一体方案落地的企业也确实是凤毛麟角。

徐雷创业前曾供职于特斯拉,领导搭建了部署于 Autopilot 2.0 系统中 TeslaVision 的深度学习网络,与另一位创始人宋新雨在软件、硬件两方面共同参与 Autopilot 2.0 系统的研发和落地。

因此 Nullmax 从一诞生初,就拥有了强大的软硬件基因。

举个例子,在自动驾驶 SoC 芯片上,通常集成了 CPU、AI 芯片(GPU/FPGA/ASIC)、深度学习加速单元(NPU)等多个模块,如何让感知、融合、规划、控制、地图、定位等功能与之匹配,在最适合的计算单元上运行,就是一个很具挑战的问题。

Nullmax 基于在异构平台丰富的开发经验,通过高效部署深度学习模型、分配不同任务,让各模块发挥出最佳性能。

多个异构计算资源可以并行地重叠处理,提高了资源利用率,吞吐率及加速比,也提高了系统数据处理的帧率。

此外,模块之间还需要考虑清楚信号和数据如何传输,模块或系统失效如何应对等一系列的具体问题。

「说白了就是整个架构之间应该怎么通讯、调度,以及同步。」为此,Nullmax 设计了高效的系统框架能够让不同模块串联,实现最高效的协同、调度、融合。

可以说,行泊一体的实际量产难度,尤其是模块本身以及模块之间的工程化部署,在过去被远远低估。毕竟,以同级配置实现越级体验的行泊一体 4.0 方案,不可能是一夕而成。

02、软件平台化,Nullmax 进军百万装车量

以 Nullmax 单 TDA4VM 行泊一体方案为例,在仅有 8 TOPS 的 AI 算力下,能够提供领航辅助、高速代驾辅助、拥堵跟车辅助、记忆泊车等一系列的行车、泊车功能。

2021 年,该方案获得某知名主机厂项目定点,采用 2 颗前视摄像头、4 颗鱼眼摄像头、5 颗毫米波雷达、12 颗超声波雷达的传感器配置,部署至 TDA4 自动驾驶域控制器,不仅可以提供丰富、安全的功能体验,更能兼顾硬件的成本。

如今,Nullmax 单 TDA4VM 行泊一体方案即将完成最终交付,预计平台化搭载的车型最终可达数十万辆量产规模。

在此基础上,Nullmax 同样打造了基于双 TDA4VM 的标准版行泊一体,也是业内首个独家定点的双 TDA4VM 周视行泊一体量产方案。

在 16 TOPS 算力下,可以胜任多达前视、周视、环视等 11 颗相机组成的庞大视觉感知,并进行毫米波雷达、超声波雷达等传感器的感知融合,完成高速领航、拥堵跟车、自主泊车、记忆泊车等智驾功能所需的各项任务,在体验上进一步优化。

suv倒车技巧左右距离图解,suv倒车入位技巧图解(3)

除了布局中低算力,Nullmax 还正在基于英伟达 Orin 芯片平台,量产大算力行泊一体智能驾驶解决方案。

该行泊一体项目是国内首个基于标准版 Orin 芯片平台落地,涵盖高速、城市和泊车的全场景量产应用,提供导航辅助驾驶、拥堵跟车、泊车辅助、常规 ADAS 等全部主流功能。

预计到 2023 年,该平台化项目的首款车型将上市交付,最终的量产总规模接近百万辆。

据了解,Nullmax 将完全自主知识产权的数据闭环工具链运用其中,助力打造自动化的闭环数据平台,支持更多创新功能的加入和自动驾驶功能 OTA 升级。

可以看到,Nullmax 能够基于德州仪器 TDA4、英伟达 Orin 等不同芯片平台推出差异化的行泊一体方案,实现不同层次的智驾体验。而且,很多的量产项目也是平台化项目,涉及多个车型。

「如果说在一个平台上做行泊一体称得上难,那么扩展到多个平台则是难上加难。」一位业内人士指出,不同平台之间的架构天差地别,很难将算法简单迁移复制。

也正是基于这个原因,不少自动驾驶企业要么花费大量的精力在不同平台之间做适配,效率低下且投入大,要么只专注做一个平台,延展性有限。

suv倒车技巧左右距离图解,suv倒车入位技巧图解(4)

首页 12下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.