在每次的数据分析工作中,将分析过程与结果写成一份通俗易懂的报告是工作的最后一步,并且对有的人来说,这也是最难的一步。
一份技术报告的目的是传递信息。然而,技术信息是很难让人理解的,因为它不仅复杂,而且无法让人轻易的了解。将数学焦虑等融入到任何事情都可以被统计数据证实这一流行观念中,你就可以明白为什么做数据分析报告是一份挑战。如果你对数据分析报告撰写流程很陌生的话,可以考虑学习下面的内容。
一、明确内容
从你最了解的部分着手开始。在写一份数据分析报告时,你最了解的部分应该是你分析的统计数据、绘制的图形以及建立的模型。
你应该有能力去描述你是如何呈现总体特征的,如何生成这些数据的或者是提供了这些数据的源头,在做探索性的分析时你发现了数据存在哪些问题,你是如何处理这些数据的,对异常数据你做了怎样的处理,应用了怎样的变换方法,对于缺失的和重复的数据你做了什么,你是如何处理违反假设的情况和不显著的结果的。
接下来,你需要决定什么是重要的内容,以及,哪些内容对报告阅读者来说是重要的。因为除非你写的报告是面向你的大学教授或者是同龄的数据分析专业人员,否则的话,你可以十分确定的认为没有人想听你讲你是如何解决各类问题的,你用了什么技巧,或者你在分析数据的时候多么努力。没有人在意你的结果是来自Excel表格还是一段自己用R语言编写的程序。
一旦整理出了你需要的信息,就为这份报告写一个概述,这样你就会知道你都要写些什么内容。这样做可以帮助你不偏离主线。你的总结或许可以选择以下三种形式中的一种:
1.执行总结
执行总结面对的是决策者或者那些没有足够的时间或耐心去阅读超过400字的文章的人。把你的概述缩减到一页以内,不要使用任何术语,只提供那些决策者需要的,可以帮助他采取适当行动的结果信息(也就是:**你想要传达的信息)**。
2.总括
总括面对的是大部分读者,无论他们是否会阅读这份报告。一篇总括是报告内容的删减版,并且关注点在你想要传达的信息上。总括的内容也不应超过几页纸。
3.摘要
摘要面对的是同专业的人以及其他可以看懂数据分析的人。一篇摘要的内容通常是一页纸或者少于一页纸,并且总结了你所做的所有的重要的工作,从定义总体到评估效应量。摘要通常被用在学术论文写作中。一旦你知道了你的读者是谁,你就可以重新撰写概述以便抓住读者的注意力。
二、了解读者
每篇教你自学技术写作的文章都会首先告诉读者要考虑他们撰写报告的观众。即使如此,或许很少有作者真的这样去做。
在统计分析中,你通常会先开始考虑你想要做出推断的那些总体所具有的特征。与之相似的,当你开始撰写一篇分析报告时,你通常会先开始考虑你想要进行交流的那些读者所具有的特征。
你必须考虑那些即将阅读你的报告的读者的这些特征:是谁(who)、是什么(what)、为什么(why)、在哪里(where)、什么时间(when),以及如何做(how)。这里有一些你需要考虑的和读者有关的内容。
1.Who
读者通常是通过他针对报告所扮演的角色来定义的。一些读者会用这份报告来做决策。一些读者会通过这份报告学习新的信息。其他的会根据自己已经知道的情况来评论这份报告。因此,一份统计报告的读者通常会被定义为:决策人员、*(利益相关者)、评论家或者对报告感兴趣的个人。
有的报告只会被一个人阅读,但是大部分报告会有很多读者。各行各业的人都有可能阅读你的报告。因此,会有初级的、中级的、甚至更多不同级别的读者参与阅读。这是有问题的,因为你无法取悦每个人。因此,要通过定位你的读者,首先关注接收你的信息的最重要的读者,其次关注读者中群体最大的那一部分。
2.What
一旦知道你的报告的目标受众是哪些人,你就应当尝试弄明白他们的特征。或许对于一个技术报告作者来说,最重要的特征是读者对报告的主题和报告中描述的统计技术的了解程度。你可能没办法改变读者对报告主题的知识储备,但是你可以通过调整呈现统计信息的方式帮助读者理解内容。例如,一个数据分析师可能遇到的读者类型包括:
(1)数学恐惧者
惧怕数字但是或许愿意了解概念。不要使用任何统计学术语。不要呈现公式。尽可能少的使用数字。例如,用“大约一半”代替任何百分比在50%左右的数字。那些额外的精度对数学恐惧者来说并不重要。