著名数学家陶哲轩的伯乐保罗·埃尔德(Paul Erdös)曾说:“数学还没有做好准备面对这样的问题”。专门研究这个问题的数学家Jeffrey Lagarias说:”这是一个危险的问题。人们沉迷于这个问题,但解决它真的是不可能的任务。“
两位数学家口中所说的问题,名为考拉兹猜想。
考拉兹猜想是数学中最引人注目的难题之一,它由德国数学家洛塔尔·考拉兹(Lothar Collatz)于1937年最早提出。与众多晦涩难懂的数学猜想不同的是,它看起来非常简单,任何已经学过加减乘除的小学生都可以对它进行推演。
考拉兹猜想说的是:无论选择什么正整数作为开始,通过应用上述函数中的规则,最终都会得到1。
这个问题说起来很简单,理解起来也很容易,从f(n)的表达式来看,它的运算规则一目了然:对于任何正整数,如果数字是偶数,则将其除以2;如果数字是奇数,则让其乘以3,再加1,再除以2;一遍一遍地重复这个过程,直到得到1,然后开始陷入一个循环。
以数字13为例:13是奇数,所以对于f(13)来说,它需要乘以3得到39,加1得到40;这时,40是偶数,所以f(40)需要除以2,得到20;再用20来重复这个计算;20又是偶数,所以只需继续除以2得到10;10还是偶数,除以2后得到5;5是奇数,乘以3、再加1再除以2,得到8;8为偶数,除以2等于4;4再除以2得到2;最后2除以2得到1。
当1开始出现时,事情开始变得有趣了。1是奇数,它需要乘以3再加上1,于是你又会重新得到4。接下来,故事的发展就是我们已经知道的那样,4到2到1再到4——陷入一个循环。如果用箭头来表示整个计算过程,以13为例,我们就会得到考拉兹序列: