布朗运动正态分布,布朗型随机运动公式

首页 > 上门服务 > 作者:YD1662023-11-22 16:22:22

如果一个随机变量的对数满足正态分布,我们说这个随机变量本身满足对数正态分布(lognormal distribution)。因此,当我们用几何布朗运动来描述股价波动时,得到的股价满足对数正态分布

通过对 lnS 的 SDE 两边积分,再对等式两边取指数,便可很容易的写出股价随时间变化的解析式:

布朗运动正态分布,布朗型随机运动公式(9)

上式乍一看好像有悖于我们的直觉。我们已知股票的年收益率期望为 μ。但在上式中,抛开 B(T) 带来的随机性不谈而仅看时间 T 的系数,股价的增长速率是 μ – 0.5σ^2 而不是 μ。这意味着什么呢?数值 μ – 0.5σ^2 又是否是什么别的收益率呢?

正确答案是,μ – 0.5σ^2 恰恰是股票每年的连续复利期望收益率。利用股价 S 的对数正态特性可以说明这一点。假设 x 代表股票每年的连续复利收益率。因此有 S(T) = S(0)e^(xT),或 x = (1/T)×(lnS(T) - lnS(0))。由上面的分析可知,lnS(T) – lnS(0) 符合均值为 (μ – 0.5σ^2)T、方差为 (σ^2)T 的正态分布。因此每年的连续复利收益率 x 也是正态分布并且满足:

布朗运动正态分布,布朗型随机运动公式(10)

直观比较股票的每年期望收益率 μ 和每年连续复利期望收益率 μ – 0.5σ^2,后者考虑了波动 σ,它们的区别就是年收益率序列算数平均值和几何平均值的区别。

来看一个例子。假设某股票在过去五年的年收益率分别为 15%,20%,30%,-20% 和 25%。这个序列的算数平均值为 14%,因此该股票的每年的(样本)期望收益率 μ = 14%。再来看看它每年连续复利期望收益率是多少。假设我们在五年前花 100 块买入它并持有 5 年,那么在 5 年后我们的回报是 100×1.15×1.20×1.30×0.80×1.25 = 179.4。因此每年(样本)连续复利期望收益率(即这个收益率序列的几何平均值)为 12.4%,显然它低于算数平均值。

4 Black-Scholes 微分方程

本节介绍 Black-Scholes 期权定价微分方程。细心如你一定已经发现了,“随机”两个字被拿掉了,而 BS 方程是一个微分方程,说明它不再具备任何随机因素,这是喜闻乐见的,因为没有多少人喜欢随机性。读完本节你就会明白这是为什么。

首先来看推导 BS 微分方程时用到的假设:

  1. 期权的行权方式为欧式,即只有到期日才可以行权。
  2. 股票的价格符合几何布朗运动,即股票的不确定性满足对数正态分布。
  3. 可以做空证券,且证券可以被分割(如可以买卖半手股票)。
  4. 市场无摩擦,即不存在交易费用和税收。
  5. 在期权期限内,标的股票不支付股息。
  6. 在期权期限内,标的股票年收益率的标准差 σ 已知且保持不变。
  7. 市场不存在无风险套利机会。
  8. 标的资产交易是连续的(如股票市场始终开市)。
  9. 短期无风险利率(由 r 表示)为常数并已知。

显然,有些假设在真实交易中是不可能出现的,但是在确定期权的理论价值时,这些假设还是普遍被接受的。当然,自 BS 模型发明以来,衍生品定价也有了长足的发展。很多改进的模型相继被提出,用于修正 BS 模型中各种假设。下面以欧式看涨期权(European call option)为例介绍 BS 微分方程。

令 C 代表欧式看涨期权的价格,显然它是标的股票价格 S 和时间 t 的函数,记为 C(S, t)。对 C 运用伊藤引理可得:

布朗运动正态分布,布朗型随机运动公式(11)

让我们来看看在一个微小的时间区间 Δt 内股价 S 和期权价格 C 如何变化。为此,将 S 和 C 的随机微分方程离散化:

布朗运动正态分布,布朗型随机运动公式(12)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.