切向速度,是与做曲线运动的物体相切的任一点测量的。因此,角速度ω与与切向速度Vt之间的关系可用公式表达为 Vt =ωr,其中r是曲线运动的半径。任意时刻测量的沿圆周运动的分量,就是切向速度。顾名思义,切向速度描述了物体沿圆周的运动,并且始终和该圆相切。
众所周知,从行驶中的汽车上跳下非常危险,当然也很刺激。孩子们可能体会到的是9岁时从旋转木马跳下的感觉——如果不是兄弟姐妹把你踹飞的话。除了感受一秒钟的恐惧感和泥土的气息,我还常常在想,为什么我从边缘飞出的距离,要比从中间飞出的孩子远?
闲话少叙,我们进入本文主题:切向速度!
首先,什么是切线?
切线是一条刚好触碰到函数上某一点的直线。此处的函数,定义为任何非线性曲线,表示一个方程式——平面直角坐标系中x和 y之间的关系。
例如,考虑我们最熟悉的曲线:圆。圆由标准方程定义。这意味着对于固定半径r,指定的 x和 y值会绘制出美丽的弧线,跟贪吃蛇结束时一样。
图解:以原点为圆心的圆。
简单起见,我考虑中心在原点的圆,即圆心在(0,0),其中r是半径,就是原点到圆周的距离。