小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理

首页 > 上门服务 > 作者:YD1662023-12-27 04:44:37

此文是《10周入门数据分析》系列第10篇

想了解学习路线,可以先阅读“”


讲完概率分布,再来讲讲统计学的最后一个知识点——假设检验。

假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立,采用逻辑上的反证法,依据统计上的小概率原理。

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(1)

为了更好的解释,这里举个例子。

假设我有一袋豆子,袋子里有红豆,也有黑豆,我想知道红豆和黑豆是不是一样多。若是一个个去看怕是要疯了。于是偷个懒,从袋子里拿了一把豆子,看看这把红豆多还是黑豆多。用这把豆子作为样本,去推断这袋豆子。既然是用样本推断总体,就有抽样误差的可能性。不管袋子里红豆多还是黑豆多,这一把不一定能真实反映这袋豆子,那怎么办呢?这就要用到假设检验了。

说假设检验之前,先要知道小概率事件。统计大牛觉得如果一件事情发生的可能性小于0.05,就可以定义为小概率事件了,也就是说,在一次研究中该事件发生的可能性很小,如果只进行一次研究,可以视为不会发生。

回到豆子的话题。现在是想通过样本(一把豆子)去推断总体(一袋豆子)。先做一个假设,一般是我们心里特别不想承认的那一种可能,也称无效假设。和无效假设对立的是备择假设,是无效假设的对立面。

无效假设:袋子里红豆和黑豆是一样多的,如果观察到红豆黑豆不一样多完全是由抽样造成的。备择假设:袋子里红豆和黑豆的确不一样多。

假定袋子里有100个豆子,50个红豆,50个黑豆。拿的这把豆子有3个红豆,7个黑豆。在无效假设成立的前提下,也就是说红豆黑豆一样多的基础上,能拿到3个红豆、7个黑豆的概率为:

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(2)

这告诉我们,在红豆和黑豆一样多的假设下,拿到3个红豆7个黑豆的可能性为0.11,是很常见的,说明所做的假设是可以成立的,还没有理由能拒绝无效假设。

假定袋子里有100个豆子,50个红豆,50个黑豆。拿的这把豆子有1个红豆,9个黑豆。

在无效假设成立的前提下,能拿到1个红豆、9个黑豆的概率为:

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(3)

这告诉我们,在红豆和黑豆一样多的假设下,拿到1个红豆9个黑豆的可能性为0.007<0.05,为小概率事件,在一次研究中是不应该发生的,而现在发生了,可能是所做的假设有问题,有理由拒绝无效假设。

简言之,假设检验的核心思想是小概率反证法,在假设的前提下,估算某事件发生的可能性,如果该事件是小概率事件,在一次研究中本来是不可能发生的,现在发生了,这时候就可以推翻之前的假设,接受备择假设。如果该事件不是小概率事件,我们就找不到理由来推翻之前的假设,实际中可引申为接受所做的无效假设。

假设检验解决那些问题

互联网运营分析师与产品经理都很熟悉的方法:ABtest。适用方面:往往新版本或者新功能上线之前,需要验证新需求的是否有正收益,传统模式往往就是新版本发布,然后观察留存率、跳转率等核心指标,如果观察表现期内,流量正增长,那么则认可该版本,如果效果反馈不佳,则快速回滚旧版本。但在移动互联网时代,千人千面讲究用户差异化的时代,产品经理在面对海量用户流量,就可以实现ABtest,过程:抽样小规模流量,进行灰度测试,检验新需求是否有正收益,如果观察周期校验效果显著,则大规模上线测试迭代,直至全流量覆盖。

ABtest其本质核心就是假设检验,但是实际操作中,这里有几个关键:

1、如何设计抽样,尽量实现对照实验两边公平;

2、如何提高灵敏度,即效果收益稳定性,多组交叉验证流量平衡;

3、对照组设置,避免引入干扰因素;

4、收益评价指标,正收益、用户体验,当然我们T检验也要通过。

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.