小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理

首页 > 上门服务 > 作者:YD1662023-12-27 04:44:37

第3步:设置假设平均差。重复上一步骤,其他参数不变,这次设置“假设平均差”为“6.5”,“输出区域”为“$I$2”。这一步,“假设平均差”为期望中的样本均值的差值,如果该值设为0,即假设样本均值相同。

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(9)

第4步:显示分析结果。做完之后,我们就可以看到t-检验的结果:H列左侧为第2步中检验该药是否有效的数据结果,H列右侧为第3步中检验该药是否能让舒张压降低6.5mmHg的检验结果。如下图所示:

小概率原理在假设原则中如何运用,结合实际阐述如何理解小概率原理(10)

上面的案例中,由于没有充分的理由判断该药治疗后的总体均数会大于或小于治疗前的舒张压均值,所以在检验过程中,前面的t-检验我们采用的是双侧检验。

从分析结果看到:H列左侧的检验结果中,tStat=4.211,P双尾=0.00087,t双尾临界=2.145,当t双尾临界时,假设成立,而这个案例中,检验结果tStat>t双尾临界,说明该结果拒绝原假设,也就是说该药有效,此外,我们还能看到P双尾=0.00087<α=0.05,这一比较结果也说明该结果拒绝原假设,同样说明该药有效。

由于已经确定该药有效,那么再判断该药能否将舒张压平均值降低6.5mmHg,所以,后面的t-检验采用的是单侧检验,这里我们设置了假设平均差,上图中红框内,检验结果tStat=0.205<t单尾临界=1.761,说明该假设成立,即该药能够让高血压患者的舒张压平均降低6.5mmhg。结果p单尾=0.42>α=0.05也说明了该假设成立。</t单尾临界=1.761,说明该假设成立,即该药能够让高血压患者的舒张压平均降低6.5mmhg。结果p单尾=0.42>


今天学习一下Excel中如何进行t-检验,数据分析更进一步。

到这里统计学部分就讲完了。

更多干货在公众号等你~

下一次将分享BI分析~


上一页123末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.