置信水平转换方案,置信水平通俗理解

首页 > 上门服务 > 作者:YD1662024-01-29 10:25:42

import numpy as np from scipy import stats sm= 200 # 样本均值 ss= 30/np.sqrt(200) # 标准差 ci94 =stats.norm.interval(confidence = 0.94, loc=sm, scale=ss) print('94% 置信水平的置信区间为', np.round(ci94,2)) 94% 置信水平的置信区间为 [196.01 203.99]

ci98 =stats.norm.interval(confidence = 0.98, loc=sm, scale=ss) print('98% 置信水平的置信区间为', np.round(ci98,2)) 98% 置信水平的置信区间为 [195.07 204.93]

ci96 =stats.norm.interval(confidence = 0.96, loc=sm, scale=ss) print('96% 置信水平的置信区间为', np.round(ci96,2)) 96% 置信水平的置信区间为 [195.64 204.36]

import numpy as np sc= [34,36,36,38,38,39,39,40,40,41,41,41,41,42,42,45,49,56] print('均值:', np.mean(sc), '\n中位数:', np.median(sc), '\n方差:', np.var(sc).round(2), '\ns标准差:', np.std(sc).round(2)) 均值:41.0 中位数:40.5 方差:24.11 s标准差:4.91

import warnings warnings.filterwarnings("ignore") sns.distplot(sc)

输出:

<Axes: ylabel='Density'>

置信水平转换方案,置信水平通俗理解(9)

sns.boxplot(sc)

输出:

<Axes: >

置信水平转换方案,置信水平通俗理解(10)

import pandas as pd import numpy as np dc3 = pd.read_csv('Cars.csv') dc3.head()

输出:

Car

MPG

Cylinders

Displacement

Horsepower

Weight

Acceleration

Model

Origin

0

Chevrolet Chevelle Malibu

18.0

8

307.0

130

3504

12.0

70

US

1

Buick Skylark 320

15.0

8

350.0

165

3693

11.5

70

US

2

Plymouth Satellite

18.0

8

318.0

150

3436

11.0

70

US

3

AMC Rebel SST

16.0

8

304.0

150

3433

12.0

70

US

4

Ford Torino

17.0

8

302.0

140

3449

10.5

70

US

m1= dc3['MPG'].mean() s1= dc3['MPG'].std()

prob_mpg = (1 - stats.norm.cdf(38, loc= m1, scale= s1)) print('mpg > 38 的概率是', np.round(prob_mpg, 3)) mpg > 38 的概率是 0.038

prob_mpg2 = stats.norm.cdf(40, loc= m1, scale= s1) print('mpg < 40 的概率是', np.round(prob_mpg2, 3)) mpg < 40 的概率是 0.978

prob_mpg3 = (1-stats.norm.cdf(20, loc= m1, scale= s1)) print('mpg > 20 的概率是', np.round(prob_mpg3, 3)) prob_mpg4 = stats.norm.cdf(50, loc= m1, scale= s1) print('mpg < 50 的概率是', np.round(prob_mpg4, 3)) prob_mpg5= prob_mpg4 - prob_mpg3 print('mpg 在 20 到 50 之间的概率是', np.round(prob_mpg5, 3)) mpg > 20 的概率是 0.642 mpg < 50 的概率是 0.999 mpg 在 20 到 50 之间的概率是 0.358

import warnings warnings.filterwarnings("ignore") sns.distplot(dc3['MPG'])

输出:

<Axes: xlabel='MPG', ylabel='Density'>

置信水平转换方案,置信水平通俗理解(11)

# mean < median dc3['MPG'].describe()

输出:

count 406.000000 mean 23.051232 std 8.401777 min 0.000000 25% 17.000000 50% 22.350000 75% 29.000000 max 46.600000 Name: MPG, dtype: float64

import pandas as pd import numpy as np db = pd.read_csv('wc-at.csv') db.head()

输出:

Waist

AT

0

74.75

25.72

1

72.60

25.89

2

81.80

42.60

3

83.95

42.80

4

74.65

29.84

plt.figure(figsize= (18,8), dpi= 80) plt.subplot(1,2,1) sns.distplot(db['AT']) plt.subplot(1,2,2) sns.distplot(db['Waist'])

输出:

置信水平转换方案,置信水平通俗理解(12)

上一页1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.