数据分析基础有哪些,数据分析的三个主要步骤

首页 > 实用技巧 > 作者:YD1662023-05-07 23:58:21

▲图 2-3 广告平台全链路分析

此时全链路公式变成

收入=实际请求数×出价率×参与竞价率×竞价成功率×(1-响应超时率)×点击率×平均点击价格

这个公式和上一个公式基本一样,只是为了让监控更完善,加了几个节点。

第二步:对每个节点进行深入洞察

如果只是完成第一步,全链路分析只能用于监测,要想得到具体的问题及解决方案,还要对每个节点进行深入洞察,梳理每个节点的影响因素,如图2-4所示。

数据分析基础有哪些,数据分析的三个主要步骤(5)

▲图 2-4 全链路分析的节点排查

在每个节点,都有非常多的原因导致这个节点的流量转化效率低。经过这样的梳理,才能找出根本原因,进而有针对性地给出解决方案。

当产品经理负责一个项目时,就是这样一个节点一个节点地优化,才能做好整体数据。由此可知,全链路分析是产品经理必备的思路和技能。

02 组成因子分解

把整体指标数据按照某种分类标准分成不同的因子的过程,称为组成因子分解。整体目标等于所有的组成因子之和。以广告平台总收入为例,其组成因子分解如图2-5所示。

数据分析基础有哪些,数据分析的三个主要步骤(6)

▲图 2-5 广告平台总收入的组成因子分解

整体指标数据只能让人看到目标达成的结果,但是不能知道是如何达成目标的,也不知道执行中的细节,更不知道如何改进。组成因子分解首先可以明确思路,把组成结果的因素清晰地列出来,并且可以针对不同的因子,制定对应的策略。

案例:笔者曾经有一次在做渠道分析时,用了这样的组成因子分解:总费用=A类渠道费用 B类渠道费用。但之后发现,A类渠道的花费是B类渠道的1.6倍,而有效用户却是B类的2.4倍(见表2-1)。在这之前,B类渠道在其他项目的经验中效果是非常好的,所以市场人员都在B类渠道花精力,看到这个数据后,立刻决定去接触市面上所有的A类渠道,以便扩充优质流量。

数据分析基础有哪些,数据分析的三个主要步骤(7)

表2-1 多个组成因子对比的案例

如果只看整体费用,就得不到这样的结论,也就不能提出有用的建议。

任意一个指标可拆解的方式都是非常多的,比如,针对总流量的组成因子分解,就有以下几种方式。

要尝试多种方式,试验出最好的因子分解方式。

需要注意的是,如何进行组成因子分解,代表着思考问题的第一维度,直接影响能否得到有用的结论。后面的所有策略和解读都是根据第一步因子分解而来的。

  1. 优先考虑业务团队习惯的拆解思路,比如广告类公司会把客户分为大客户、中小客户。
  2. 要勇敢尝试,不要固化思路。

案例:以前做过一个项目,我们按“收入=移动端收入 PC端收入”来分解组成因子,发现移动端收入快速上涨。但是当时高层的思路还是“销售额=流量×转化率×客单价”,他们盘算的是“客单价提升x元,就会提升x元的销售额”。按照这样的思路,资源就投给了客单价提升,没有在移动端投入。等到发现移动时代来临,再开始建团队和买流量,成本已经变得非常高。

从这个案例中可以看出,如何进行因子分解,决定了如何思考目标的组成因素,即如何思考解决方案、资源调配等更深层的问题。所以要经常尝试是否有其他的因子分解方式,如果囿于经验、思路固化,可能就会错失机会。

03 影响因子拆解

很多时候,因子对结果的影响是定性的,并不能完全把结果拆成多个因子的相加,这时候就可以采用影响因子拆解的方式,列出对结果有影响的所有因子,逐个分析。比如对于销售额,影响因子就是商品、会员、客服、流量、活动等,但是不能说销售额=商品 会员 客服 流量 活动。

图2-6所示为B2C订单转化率的常用影响因子拆解。

数据分析基础有哪些,数据分析的三个主要步骤(8)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.