文末领取【旅游行业数据报告】
1
相关系数
1. 相关系数的概念著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。相关系数的计算公式为:
复相关系数(multiple correlation coefficient):反映一个因变量与一组自变量(两个或两个以上)之间相关程度的指标。它是包含所有变量在内的相关系数。它可利用单相关系数和偏相关系数求得。其计算公式为:
当只有两个变量时,复相关系数就等于单相关系数。Excel中的相关系数工具是单相关系数。
2. 相关系数工具的使用CORREL 和 PEARSON 工作表函数均可计算两个测量值变量之间的相关系数,条件是每种变量的测量值都是对 N 个对象进行观测所得到的。(丢失任何对象的任何观测值都会导致在分析中忽略该对象。)相关系数分析工具特别适合于当 N 个对象中的每个对象都有两个以上的测量值变量的情况。它提供一张输出表(相关矩阵),其中显示了应用于每个可能的测量值变量对的 CORREL(或 PEARSON)值。
与协方差一样,相关系数是描述两个测量值变量之间的离散程度的指标。与协方差的不同之处在于,相关系数是成比例的,因此它的值与这两个测量值变量的表示单位无关。(例如,如果两个测量值变量为重量和高度,当重量单位从磅换算成千克时,相关系数的值并不改变。)任何相关系数的值都必须介于 -1 和 1 之间(包括 -1 和 1)。
可以使用相关系数分析工具来检验每对测量值变量,以便确定两个测量值变量是否趋向于同时变动,即,一个变量的较大值是否趋向于与另一个变量的较大值相关联(正相关);或者一个变量的较小值是否趋向于与另一个变量的较大值相关联(负相关);或者两个变量的值趋向于互不关联(相关系数近似于零)。
例:9个小麦品种(分别用A1,A2,...,A9表示)的6个性状资料见表,作相关系数计算。