相关系数公式转换过程,相关系数计算公式

首页 > 实用技巧 > 作者:YD1662024-01-13 03:48:25

相关系数公式转换过程,相关系数计算公式(1)

假设有一个虚拟的数据集包含多对变量,即每位母亲和她女儿的身高:

相关系数公式转换过程,相关系数计算公式(2)

通过这个数据集,我们如何预测另一位身高为63的母亲的女儿的身高?

方法是用线性回归。

首先找到最佳拟合线,然后用这条直线做预测。

相关系数公式转换过程,相关系数计算公式(3)

线性回归是寻找数据集的最佳拟合线,这条线可以用来做预测。

如何找到最佳拟合线?

这就是为什么我们需要使用梯度下降。

梯度下降是一种找到最佳拟合线的工具。

在深入研究梯度下降之前,先看看另一种计算最佳拟合线的方法。

最佳拟合线的统计计算方法:

直线可以用公式表示:y=mx b。

回归线斜率m的公式为:m = r * (SD of y / SD of x)。

转换:x和y值之间的相关系数(r),乘以y值的标准差(SD of y)除以x值的标准偏差(SD of x)。

以上数据中母亲身高的标准差约为4.07,女儿身高的标准偏差约为5.5,这两组变量之间的相关系数约为0.89。

因此,最佳拟合线或回归线为:

y = 0.89*(5.5 / 4.07)x b y = 1.2x b

我们知道回归线穿过了平均点,所以线上的一个点是(x值的平均值,y值的平均值),其中有(63.5,63.33)。

63.33 = 1.2*63.5 b b = -12.87

因此,使用相关系数和标准差计算的回归线近似为:

y = 1.2x - 12.87

使用统计学的回归线为y=1.2x-12.87。

接下来让我们研究梯度下降。

计算最佳拟合线的梯度下降法:

在使用梯度下降法时,我们从一条随机线开始,一点一点地改变直线的参数(即斜率和y轴截距),以得到最佳拟合的直线。

那么我们怎么知道什么时候到达最合适的位置呢?

对于尝试的每一条直线——直线A、直线B、直线C等等——我们都要计算误差的平方和。比如:如果直线B的值比直线A的误差小,那么直线B更适合,等等。

相关系数公式转换过程,相关系数计算公式(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.