图 14 导线焊接部位高度
(3) 去除端子冲切面的毛刺。由于端子是金属冲压零件。在端子成型的冲压切断面上断裂带的根部会产生锋利的毛刺 (如图 15 所示)。在热缩的过程中毛刺有刺破热缩管管壁的风险, 进而导致热缩管密封失效。因此, 端子从密封过渡区开始向后, 所有与热塑管接触的部位, 都必须对切断面进行倒角处理。建议采用 R = 0. 5 mm 的倒圆角 (见图 13)。
图 15 端子冲切面结构
3.1.3 压接翼结构设计
由于铝导线的抗拉强度和抗剪切强度都要弱于铜导线,其抗疲劳强度也要弱于铜导线。这在一定程度上限制了铝导线在整车上的应用, 到目前为止铝导线仍被禁止使用在发动机本体上。但是大线径电缆通常都会被使用在发动机舱内, 例如连接蓄电池与电源分配器(PDU) 之间电瓶线。在这些动力电缆上应用铝导线具有极高的经济价值。因此针对这些应用需要考虑 专门的结构来提高连接部位的抗疲劳强度和抵御装配过程中的外力作用。而在铜端子和铝导线的连接中, 最为薄弱的环节是端子尾部到导线绝缘层之间的区域 (见图 16)。因此该部位需要采用额外结构以增加强度, 即在端子尾部增加绝缘皮压接翼结构。通过压接翼环抱在导线的绝缘层外部 (见图 17), 有效地将一部分外力传递到金属端子本体上, 缓解了铝导线根部直 接受到外力作用和疲劳负载。
图 16 铝导线连接中最薄弱的部位
图 17 带压接翼结构的铜端子
另外, 考虑到大线径电缆的外径较大。例如120 mm 2 的铝导线的外径达到18.7 mm。由于端子尾部增加了压接翼结构, 如果端子的焊接区域表面与压接翼底面设计在同一平面上, 则在焊接时芯线会向一侧偏斜, 导致铝导线焊接部位前端的铝丝 参差不齐, 其中过长的铝丝会有戳破热缩管管壁的风险。与此同时, 端子后端的压接翼直接压在导线上端, 致使铝导线上端的铝丝存在较大的拉伸应力。该区域的铝丝容易在较小的外力作用下被拉断, 从而降低连接部位的电气性能和机械性能。为了避免此现象的产生, 如图 18 所示, 可以通过以下两个措施来解决:
(1) 端子压接翼底面与端子焊接面设计成有落差的结构 (见图中 X 尺寸), 使铝导线焊接部位尽量靠近导线的轴线, 减 小偏置的影响;
(2) 控制绝缘层压接翼与焊接区的过渡距离 (见图中 Y 尺 寸), 减小因过渡区域过短而导致焊接区域的铝丝受到拉扯作用的影响。