整数分拆
内容概述:
1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大。也就是把整数分拆成两个相等或者相差1的两个整数。
2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np r,则分成r个(p 1),(n-r)个P。
3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大。
4.把自然数分成若干个互不相等的整数,则先把它表示成2 3 4 5 … n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数。
如果仅大于1,则除去2,再把最大的那个数加1。
5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。
即当有m个奇约数表示的乘积,则有奇约数
个奇约数。
6.共轭分拆.我们通过下面一个例子来说明共轭分拆:
如:10=4 2 2 1 1,我们画出示意图
,我们将其翻转(将图左上到右下的对角线翻转即得到):
,可以对应的写成5 3 l 1,也是等于10,即是10的另一种分拆方式。
我们把这两种有关联的分拆方式称为互为共轭分拆。
典型例题:
1.写出13=1 3 4 5的共轭分拆。
【分析与解】画出示意图