需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
比赛计分问题
● 典例探究
【例1】某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。
【解析】设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得:x=37则:45-x=8答:这个人选错了8道题.
【例2】某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?
【解析】因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解。
设胜了x场,那么负了(11-x)场.
2x 1•(11-x)=18
x=7
11-7=4
那么这个班的胜负场数应分别是7和4.
● 方法突破
比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:
每队的胜场数+负场数 平场数=这个队比赛场次;
得分总数 失分总数=总积分;
失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
顺逆流(风)问题
● 典例探究
【例1】某轮船的静水速度为v千米/时,水流速度为m千米/时,则这艘轮船在两码头间往返一次顺流与逆流的时间比是( )
● 方法突破
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
调配问题
● 典例探究
【例1】某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?
【解析】如果设从一车间调出的人数为x,那么有如下数量关系
原有人数现有人数一车间6464-x二车间5656 x
设需从第一车间调x人到第二车间,根据题意得:
2(64-x)=56 x,
解得x=24;
答:需从第一车间调24人到第二车间.
【例2】甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?
【解析】若设应分给甲仓库粮食X吨,则数量关系如下表