前面谈到定子是通过电流进行励磁产生旋转的磁场。如下图所示,图纸红色、绿色、紫色分别代表的就是A/B/C三相电流(间隔120°),三相电流分量合成定子磁场向量总和。通过控制不同时刻三相电流,也就可以控制电机定子磁场方向了。

Clarke和Park变换的根本意义在于,不在需要直接控制三相电流,而是控制变换后的Q轴电流和D轴电流(Q-D轴电流和三相电流存在等价关系)。
有读者可能会说:道理我都懂,但是为什么要这么去做呢?
一方面,是减少控制变量,同时进行更直观的理解(Iq产生扭矩,Id不产生扭矩);
另外一方面,电流控制是通过PID控制器来实现,而PID控制器很难控制交流信号。交流电流通过Clarke和Park变换成两个直流电流后,通过两个PI控制器即可(一个使Id为0,一个使Iq最大)。
整个控制流程简单描述如下:
1. 测试三相电流,通过Clarke和Park变换将三相电流转换成Iq和Id。
2. 获取转换后的Iq和Id后,与需求进行对比,得出误差。
3. 误差作为输出,通过PI控制器输出Vq和Vd(旋转坐标系中的变量)。
4. Vq和Vd通过Clarke和Park转化成三相电压,对电机进行控制。

关于Clarke和Park变换暂且告一段落,还记得之前留下的测量转子角度吗?我们回过头来再看下这个问题。
通过前文描述,我们知道转子角度的位置测量是电机控制的基础。转子是一个旋转零件,其绝对位置一直在变化,因此需要借助外界零件对其进行测量,而这个零件在驱动电机中常用的旋转变压器(在BLDC电机常用霍尔传感器),简称为旋变。
旋变可以理解为一个小电机,同样由定子和转子总成,其输出的感应电压大小随转子角位移而发生变化,电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。通过对输出信息的解码来获取我们所需要的“角度”。
借助前文谈到的Clarke和Park变换概念,通常将电机转子磁极产生磁场的N极中心轴线作为直轴Q轴;而超前直轴90°的位置定义为交轴D轴。

在这个时刻,旋变初始读数为0(旋转变压器的正弦输出绕组中感应电压最小时,转子位置就是电气零位,输出电压就是零位电压)。那么意味着,随着转子转动,电机转子D轴与电机定子A轴重合时,旋变读数会发生变化,旋变读数变为θ(暂不考虑方向正负)。
