写成上面形式后,大家可能不再感到陌生了,它是111111111×111111111
直式计算的一部分,所以12345678987654321=1111111112。
同样可以求出:121=112,12321=1112,1234321=11112,123454321=111112,
12345654321=1111112,1234567654321=11111112,123456787654321=111111112。
从上面各橄榄数中,可以发现橄榄数中间的哪个数与和它相等的两次幂中底数的1的个数相等,即:
(其中n=1,2,…,9)。由于12345654321=1111112,而111111能被3,7,11,13,37整除,所以12345654321也能被3,7,11,13,37整除,并且有12345654321=32×72×112×132×372。