一、作幂函数图象的步骤
第一步:画第一象限的部分。
幂函数在第一象限内的图象以下列三个函数图象为代表:当α<0时,以y=x-1的图象为代表;当0<α<1时,以y=x1/2的图象为代表;当α>1时,以y=x2的图象为代表。
第二步:求幂函数的定义域,幂函数在第二或第三象限内是否有图象取决于定义域。
第三步:若幂函数图象在y轴左侧存在,则直接研究函数的奇偶性,据此画出y轴左侧的图象。
二、求幂函数的定义域和值域的方法
幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解。
幂函数的定义域由幂指数α确定:
(1)当幂指数取正整数时,定义域为R;
(2)当幂指数取零或负整数时,定义域为(-∞,0)U(0, ∞);
(3)当幂指数取分数时,可以先化成根式,再利用根式的性质求定义域。
三、比较幂的大小的三种常用方法
1,直接法:当幂指数相同时,直接利用幂函数的单调性来比较大小。
2,转化法:当幂指数不同时,可以先转化为相同幂指数,再运用函数的单调性比较大小。
3,中间量法:当底数不同且幂指数也不同而不能运用单调性比较大小时,可选取适当的中间值与两数分别比较,从而达到比较大小的目的。
四、利用幂函数的单调性解不等式的步骤
利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题,求解步骤如下:
(1)确定可以利用的幂函数;
(2)借助相应幂函数的单调性,将不等式的大小关系转化为自变量的大小关系;
(3)解不等式(组)求参数的取值范围,注意分类讨论思想的应用。