数学,对于每个学生阶段的人来说都是一门痛苦的课程,每次解答一道题目都是一次折磨,然而我们经历的都只是基础课程。在数学界有七大数学难题难倒了一大片的数学家,这七大难题也被认为是目前数学界最难的题目,甚至还专门设立一个大奖基金,每一道题目悬赏一百万美元的奖励。快来看看吧!
世界七大数学难题
1、NP完全问题
有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题,这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。
2、霍奇猜想
霍奇猜想是代数几何的一个重大的悬而未决的问题。它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。用通俗的话说,就是“再好再复杂的一座宫殿,都可以由一堆积木垒成”。
用文人的话说就是:任何一个形状的几何图形,不管它有多复杂,它都可以用一堆简单的几何图形拼成。在实际工作中,我们无法在二维平面的纸上绘画出来一种复杂的多维图形,霍奇猜想就是把复杂的拓扑图形分拆成为一个个构件,我们只要按照规则安装就可以理解设计者的思想。
3、庞加莱猜想
庞加莱猜想是法国数学家庞加莱提出的一个猜想,即“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点
或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。