分类 :
① 分析现象用柏拉图:与不良结果有关,用来发现主要问题。
A 品质:不合格、故障、顾客抱怨、退货、维修等;
B 成本:损失总数、费用等;
C 交货期:存货短缺、付款违约、交货期拖延等;
D 安全:发生事故、出现差错等。
② 分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A 操作者:班次、组别、年龄、经验、熟练情况等; B 机器:设备、工具、模具、仪器等;
C 原材料:制造商、工厂、批次、种类等;
D 作业方法:作业环境、工序先后、作业安排等。
柏拉图的作用:
① 降低不良的依据;
② 决定改善目标,找出问题点;
③ 可以确认改善的效果。
实施步骤:
① 收集数据,用层别法分类,计算各层别项目占整体项目的百分数;
② 把分好类的数据进行汇总,由多到少进行排列,并计算累计百分数;
③ 绘制横轴和纵轴刻度;
④ 绘制柱状图;
⑤ 绘制累积曲线;
⑥ 记录必要事项
⑦ 分析柏拉图
⑧ 要点:
A 柏拉图有两个纵坐标,左侧纵坐标一般表示数量或金额,右侧纵坐标一般表示数量或金额的累积百分数;
B 柏拉图的横坐标一般表示检查项目,按影响程度大小,从左到右依次排列;
C 绘制柏拉图时,按各项目数量或金额出现的频数,对应左侧纵坐标画出直方形,将各项目出现的累计频率,对应右侧纵坐标描出点子,并将这些点子按顺序连接成线。
应用要点及注意事项:
① 柏拉图要留存,把改善前与改善后的柏拉图排在一起,可以评估出改善效果;
② 分析柏拉图只要抓住前面的2~3项九可以了;
③ 柏拉图的分类项目不要定得太少,5~9项教合适,如果分类项目太多,超过9项,可划入其它,如果分类项目太少,少于4项,做柏拉图无实际意义;
④ 作成的柏拉图如果发现各项目分配比例差不多时,柏拉图就失去意义,与柏拉图法则不符,应从其它角度收集数据再作分析;
⑤ Y 柏拉图是管理改善的手段而非目的,如果数据项别已经清楚者,则无需浪费时间制作柏拉图;
⑥ 其它项目如果大于前面几项,则必须加以分析层别,检讨其中是否有原因;
⑦ 柏拉图分析主要目的是从获得情报显示问题重点而采取对策,但如果第一位的项目依靠现有条件很难解决时,或者即使解决但花费很大,得不偿失,那么可以避开第一位项目,而从第二位项目着手。
因果图
所谓因果图,又称特性要因图,主要用于分析品质特性与影响品质特性的可能原因之间的因果关系,通过把握现状、分析原因、寻找措施来促进问题的解决,是一种用于分析品质特性(结果)与可能影响特性的因素(原因)的一种工具。又称为鱼骨图。
分类:
① 追求原因型:在于追求问题的原因,并寻找其影响,以因果图表示结果(特性)与原因(要因)间的关系;
② 追求对策型:追求问题点如何防止、目标如何达成,并以因果图表示期望效果与对策的关系。
实施步骤:
① 成立因果图分析小组,3~6人为好,最好是各部门的代表;
② 确定问题点;
③ 画出干线主骨、中骨、小骨及确定重大原因(一般从5M1E即人Man、机Machine、料Material、法Method、测Measure、环Environment六个方面全面找出原因);
④ 与会人员热烈讨论,依据重大原因进行分析,找到中原因或小原因,绘至因果图中;
⑤ 因果图小组要形成共识,把最可能是问题根源的项目用红笔或特殊记号标识;
⑥ 记入必要事项
应用要点及注意事项:
① 确定原因要集合全员的知识与经验,集思广益,以免疏漏;
② 原因解析愈细愈好,愈细则更能找出关键原因或解决问题的方法;
③ 有多少品质特性,就要绘制多少张因果图;
④ 如果分析出来的原因不能采取措施,说明问题还没有得到解决,要想改进有效果,原因必须要细分,直到能采取措施为止;
⑤ 在数据的基础上客观地评价每个因素的主要性;
⑥ 把重点放在解决问题上,并依5W2H的方法逐项列出,绘制因果图时,重点先放在“为什么会发生这种原因、结果”,分析后要提出对策时则放在“如何才能解决”;
Why——为何要做?(对象)
What——做什么?(目的)
Where——在哪里做?(场所)
When——什么时候做?(顺序)
Who——谁来做?(人)
How——用什么方法做?(手段)
How much——花费多少?(费用)
⑦ 因果图应以现场所发生的问题来考虑;
⑧ 因果图绘制后,要形成共识再决定要因,并用红笔或特殊记号标出;
⑨ 因果图使用时要不断加以改进。
散布图
将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
分类:
① 正相关:当变量X增大时,另一个变量Y也增大;
② 负相关:当变量X增大时,另一个变量Y却减小;
③ 不相关:变量X(或Y)变化时,另一个变量并不改变;
④ 曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。;
实施步骤:
① 确定要调查的两个变量,收集相关的最新数据,至少30组以上;
② 找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
③ 将相应的两个变量,以点的形式标上坐标系;
④ 计入图名、制作者、制作时间等项目;
⑤ 判读散布图的相关性与相关程度。
应用要点及注意事项:
① 两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
② 通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
③ 由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
④ 当有异常点出现时,应立即查找原因,而不能把异常点删除;
⑤ 当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
直方图
直方图是针对某产品或过程的特性值,利用常态分布(也叫正态分布)的原理,把50个以上的数据进行分组,并算出每组出现的次数,再用类似的直方图形描绘在横轴上。
实施步骤 :
① 收集同一类型的数据;
② 计算极差(全距)R=Xmax-Xmin;
③ 设定组数K:K=1 3.23logN