图的左边部分是经过BoxCox变换后的时间序列分布,可以看到,它还远远不能被称为“正态”分布。但是如果我们把它和右边的比较,我们可以说的确更接近于“正态”。
我们还可以做的另一件事是确保执行的转换是有用的,可以创建一个概率图:绘制理论分布的分位数(在我们的情况下是正态)与经验数据的样本(即我们考虑的时间序列)。越靠近白线的点越好。
fig = plt.figure()
ax1 = fig.add_subplot(211)
prob = stats.probplot(df_d.t2m, dist=stats.norm, plot=ax1)
ax1.get_lines()[1].set_color('w')
ax1.get_lines()[0].set_color('#8dd3c7')
ax1.set_title('Probplot against normal distribution')
ax2 = fig.add_subplot(212)
prob = stats.probplot(df_d.t2m_box, dist=stats.norm, plot=ax2)
ax2.get_lines()[1].set_color('w')
ax2.get_lines()[0].set_color('#8dd3c7')
ax2.set_title('Probplot after Box-Cox transformation')
plt.tight_layout()fig = plt.figure()
ax1 = fig.add_subplot(211)
prob = stats.probplot(df_d.t2m, dist=stats.norm, plot=ax1)
ax1.set_title('Probplot against normal distribution')
ax2 = fig.add_subplot(212)
prob = stats.probplot(df_d.t2m_box, dist=stats.norm, plot=ax2)
ax2.set_title('Probplot after Box-Cox transformation')
plt.tight_layout()
这个概率图还有一个更常见的名字QQ图
另外需要说明的是,如果打算使用转换后的时间序列进行ML建模,不要忘记应用反向BoxCox转换,这样才能的到最终的正确结果。
自相关时间序列分析的最后一步是自相关。自相关函数(ACF)估计时间序列和滞后版本之间的相关性。或者换句话说,时间序列的特定值如何与不同时间间隔内的其他先验值相关联。绘制部分自相关函数(PACF)也可能有所帮助,它与自相关相同,但删除了较短滞后的相关性。它估计某个时间戳内值之间的相关性,但控制其他值的影响。
for var in df.columns[:-1]:
fig, (ax1, ax2) = plt.subplots(2,1,figsize=(10,8))
plot_acf(df_d.t2m, ax = ax1)
plot_pacf(df_d.t2m, ax = ax2)
opinionated.set_title_and_suptitle(vars[var], '',position_title=[0.38,1],
position_sub_title=[0.95, 1])
plt.tight_layout()
plt.show()
可以看到在地表压力时间序列中有一个非常强的部分自相关,有1天的滞后。然后明显减弱,3天后几乎消失。这样的分析可以帮助我们更好地理解正在处理的数据的性质,从而得出更有意义的结论。
总结以上就是在处理时间序列时进行探索性数据分析时常用的方法,通过上面这些方法可以很好的了解到时间序列的信息,为我们后面的建模提供数据的支持。
本文数据:
[1] Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac
作者:Aleksei Rozanov