这样的式子给出一个函数,使得由任何给定的数 x ,能够得到一个新的数 y 。然后,革命者狄利克雷来了。他说,忘掉那些式子,仅关注在输入 -- 输出的行为这方面,函数做了什么。根据狄利克雷的说法,一个函数是任何能由旧的数得到新的数的规则。这条规则并不一定能被一个代数公式表达。事实上,没有理由要将注意力局限在数上。一个函数可以是任何一条由一种对象出发得到新对象的规则。
有了这个定义,这个由如下规则定义的实数上的函数便合法化了:
如果 x 是有理数,令 f(x)=0;如果 x 是无理数,令 f(x)=1。
试着为这个怪物般的函数作图吧!
数学家开始研究这种抽象的函数的性质。这种函数并非由某个公式给出,而是由它们的行为给定的。例如,函数是否具有这样的性质,使得当你赋予它不同的初始值时,它总能给出不同的答案?(这个性质被叫作单射性。)
在被称为实分析的新学科的发展过程中,这种抽象的、概念化的方法硕果累累。数学家凭借自己的努力,研究了诸如函数的连续性和可微性等抽象概念。法国和德国数学家发明了连续性和可微性的 ε-δ 定义。直到今天,每一代要学习微积分后续数学课程的学生为了掌握它,都要耗费很大气力。
还有,19 世纪 50 年代,黎曼用可微性定义了一个复函数,而由公式给出的该函数的定义则被他看作是第二定义。
著名德国数学家高斯(1777---1855)提出了剩余类(你在代数课上很可能会遇到它),这是我们现在视为标准的方法的先驱。这种方法将数学结构定义为带有特定运算的集合,而这些运算的行为由公理指定。
继高斯之后,戴德金研究了环、域和理想(ideal)等新概念,它们每个都被定义为一族带有特定运算的对象。(再一次地,在学过微积分后,你可能很快就会碰上这些概念。)
接下来还有更多改变。
像大多数革命一样,19 世纪发生的这些改变,很早便已萌芽。古希腊人无疑对把数学作为一种概念上的探索很有兴趣,而不仅仅只是将其看作计算。17 世纪微积分学的共同发明人莱布尼茨,也曾深入地思考过这两种进路。但直到 19 世纪,数学在很大程度上还是被看作一系列解题的算法。
然而,对于今天这些完全是学习着已经革新后的数学概念长大的数学家来说,数学不过就是 19 世纪那场革命的产物。这场革命可能并不轰轰烈烈,并在很大程度上已经被遗忘了,但革命已经完成,并且影响深远。而且,它为本书作好了铺垫,毕竟本书的主要目的是,提供进入现代数学的新世界(或者说,至少学习以数学的方式思考)所需要的基本思想工具。
目前,尽管 19 世纪后的数学概念已成为了微积分之后的大学数学课程的主要内容,但它在中学数学中并没有太大影响,这也就是你需要这样一本书来帮助你完成这次过渡的原因。曾经有过一次将这种新方法引入中学课堂的尝试,但这次尝试出了大错,并很快被放弃了。
这就是 20 世纪 60 年代所谓的“新数学”(New Math)运动。当时出错的地方在于,当革新的信息从著名大学传递到中学时,它们被严重地曲解了。
对 19 世纪中期前后的数学家来说,计算与理解,两者一直都很重要。19 世纪的革命,只是在对数学的看法上,关注点发生了转移:计算与理解,哪个是数学的本质,哪个只发挥派生或支持的作用。
不幸的是,在 20 世纪 60 年代,传递到全国中学教师那里的信息往往是,“忘掉微积分技巧吧,只要关注概念就好”。这种荒谬的、极其糟糕的策略使得讽刺作家(同时也是一位数学家)汤姆·莱勒(Tom Lehrer)在他的歌《新数学》(New Math)中写道:“方法才重要,别管是否得到了正确答案。”数年后,大部分“新数学”(请注意,它其实早已超过了一百岁)从中学教学大纲中被删除了。
自由社会里教育政策制定的性质,使得在可预见的未来,这样的改变不太可能再次发生,即使在第二次时,它有可能做得更好。人们也不清楚(至少对我来说),这样一种改变本身是否是可欲的。有一些教育方面的观点就认为(尽管由于缺乏确凿证据,观点是否成立还颇有争议),在能够思考抽象数学对象的性质前,人类思维需要对这些对象的计算达到一定水平的掌握才行。
043
你为什么需要学这些?
现在你应该明白了,19 世纪的这场转变是发生在专业数学圈中的变化,数学家从把数学看作是计算性的,转变成看作是概念性的。作为专业人士,他们对数学的本质更感兴趣。但对大多数科学家、工程师以及其他在日常工作中使用数学方法的人来说,情况大致上还是和以前一样,到今天还是如此。计算(并且得到正确的结果)依然和从前一样重要,并且它的运用,比起历史上的任何时期,都要更为广泛。
因此,对任何不属于数学圈的人来说,这场转变看起来更像是数学活动的扩张,而不是关注点的改变。如今学数学的大学生不仅仅要学习解题套路,还(额外地)被要求掌握其背后的概念,并能够证明他们所使用的方法是合理的。
如此要求是否合理?专业数学家需要这种概念性的理解,因为他们的工作是发展新的数学并检验它的正确性。但为什么也这样要求那些学生,他们日后的职业(比如工程师)只是会把数学当作工具而已啊?
有两个答案,两者都相当合理。(剧透一下:仅仅只是表面看上去有两个答案,深究下去,它们其实是一样的。)
第一个,教育不完全只是为了获取将来职业生涯中所要用到的特定工具。为了我们的文化瑰宝代代相传,数学作为人类文明最伟大的创造之一,应该与科学、文学、历史以及艺术一起被传授。活着并不只是为了工作和职业。教育是为人生而作的准备,而掌握特定的工作技能只是其中一部分。
第一个回答肯定不需要更多的解释了吧。第二个回答则是针对“作为工作所需要的工具”的议题。
毋庸置疑,许多工作需要数学技能。许多人在找工作时发现,他们缺乏数学背景。事实上,在大多数行业中,几乎任意层次的对数学的需求实际上都比通常预计的要高。
许多年来,我们已经习惯于这个事实:工业社会的进步需要具有数学技能的劳动力。然而,如果你更仔细地观察一下,这些人可分为两类。一类由这样的人组成:对给定的数学问题(即已用数学术语表述的问题),能够找到它的数学解。另一类则由这样的人组成:拿到一个新问题后,比如说是制造业方面的,能够用数学的方法识别和描述该问题的关键特征,并用数学化的描述精确地分析这个问题。
在过去,对拥有第一类技能的雇员的需求很大,而对拥有第二类技能的人才的需求很小。我们的数学教育过程大体上能够满足这两种需求。虽然数学教育一直以来关注于生产第一类工作者,但他们当中的一些人势必也擅于第二种活动。于是一切都好。
但在当今世界中,公司必须持续不断地创新以保持在商业竞争中立于不败之地,从而需求转向了第二类人:拥有数学思维的人,他们能够跳出盒子思考,而不是只在盒子内思考。现在,突然之间,问题来了。
对于拥有一系列数学技能、能够长期独自工作、深入关注某一特定数学问题的人来说,对他们的需求一直存在,并且我们的教育系统也应该支持他们的发展。但在 21 世纪,对第二类人才的需求更大。由于我们并没有为这样的个体命名(“有数学能力的人”或者甚至公众观念里的“数学家”,通常指的是第一类人),我建议给他们起一个名字:创新的数学思考者(innovative mathematical thinkers)。
这类新的个体(好吧,这其实并不新鲜,我只是认为之前没有人注意过他们),首先需要对数学有一个很好的概念性的理解,知道它的能力、范围、何时及如何被应用,以及它的局限。他们也需要扎实地掌握一些基本的数学技能,但并不需要特别高超。更为重要的一条是,他们能够在团队工作(通常是跨学科的团队)中发挥作用,能用新的方式看待事物、能快速学习和迅速掌握可能需要的新技能,并擅长将旧方法运用于新形势中。
我们如何才能教育出这样的个体?我们要致力于对概念性思考的教育。这种思考隐藏在所有具体的数学技能之后。还记得那句古话吧?“授人以鱼,不如授之以渔。”对 21 世纪的数学教育来说,也是如此。
现在已经有了那么多不同的数学技能,并且新的技能也一直在发展之中,想在 K-16 教育中完全包含它们是不可能的。到一名大学新生毕业参加工作时,那些在大学里学过的许多具体的技能很可能已不再重要了,而新的技能却大为风行。教育的重点必须是学习如何去学。
数学中不断增长的复杂度使得 19 世纪的数学家将对计算技能的关注转移(或扩张,如果你喜欢这样说的话)到对潜在的、基本的、概念性的思考能力的关注上。
一百五十年后的今天,在更复杂的数学的协助下,社会又发生了改变。关注点的转移不再仅仅对数学家很重要,而是对每个人都很重要,如果他们是以要将数学应用于现实的心态来学习数学的话。
所以,现在你不仅知道了为什么 19 世纪的数学家转移了数学研究的关注点,而且也知道了为什么从 20 世纪 50 年代开始,大学里学数学的学生也被要求掌握概念性数学思维。
换句话说,现在你知道了为什么你的大学想让你学这门过渡课程。但愿你现在也意识到了为什么这对你的生活如此重要,而不仅仅是为了解决通过大学数学课程的燃眉之急。
上文转自公号图灵新知, [遇见]已获转发授权.
推荐阅读
作者:基思·德夫林 译者:林恩
写给高中生、大学生以及所有希望提高分析思维能力者的数学思维入门书