1.回归分析缺少Y?
回归分析是研究X对于Y的影响。有时候由于问卷设计问题,导致直接缺少了Y(没有设计对应的问卷题项),建议可以考虑将X所有题项概括计算平均值来表示Y。(使用“ 生成变量”的 平均值功能)(另提示:如果问卷中并没有设计出Y对应的题项,没有其它办法可以处理)
2.影响关系的大小,那个自变量影响更大一点?
如果说自变量X已经对因变量Y产生显著影响(P< 0.05),还想对比影响大小,建议可使用标准化系数( Beta)值的大小对比影响大小,Beta值大于0时正向影响,该值越大说明影响越大。Beta值小于0时负向影响,该值越小说明影响越大。
3.回归分析之前是否需要先做相关分析?
一般来说,回归分析之前需要做相关分析,原因在于相关分析可以先了解是否有关系,回归分析是研究有没有影响关系,有相关关系但并不一定有回归影响关系。当然回归分析之前也可以使用散点图直观查看数据关系情况等。
4.常数项值很大或者很小?
常数项无实际意义,包括其对应的显著性值等均无实际意义,只是数学角度上一定存在而已。
5.回归系数非常非常小或者非常非常大?
如果说数据的单位很大,不论是自变量X还是因变量Y;此种数据会导致结果里面的回归系数出现非常非常小,也或者非常非常大。此种情况是正常现象,但一般需要对数据进行统一取对数处理,以减少单位问题带来的‘特别大或特别小的回归系数’问题。
总结以上就是多元线性回归分析的指标解读,对于线性回归的操作步骤具体可以查看推荐文章,线性回归在实际研究里非常常见,但是理论与实际操作会有较大“距离”,具体还需要结合实际研究考察。