电磁波是谁预言谁证实的,电磁波是谁预言的是谁证实的

首页 > 教育 > 作者:YD1662024-06-12 22:58:05

这组方程的来龙去脉长尾科技在上一篇文章《最美的公式:你也能懂的麦克斯韦方程组(微分篇)》里已经做了详细的介绍,这里不再多说。

这组方程里,E表示电场强度,B表示磁感应强度,ρ表示电荷密度,J表示电流密度,ε0和μ0分别表示真空中的介电常数和磁导率(都是常数),▽是矢量微分算子,▽·和▽×分别表示散度和旋度:

电磁波是谁预言谁证实的,电磁波是谁预言的是谁证实的(17)

接下来我们的任务,就是看如何从这组方程里推出电磁波的方程。

首先,如果真的能形成波,那么这个波肯定就要往外传,在远离了电荷、电流(也就是没有电荷、电流)的地方它还能自己传播。

所以,我们先让电荷密度ρ和电流密度J都等于0,当ρ=0,J=0时,我们得到的就是真空中的麦克斯韦方程组:

有些人觉得你怎么能让电荷密度ρ等于0呢?

这样第一个方程就成了电场的散度▽·E=0,那不就等于说电场强度E等于0,没有电场了么?没有电场还怎么来的电磁波?

很多人初学者都会有这样一种误解:好像觉得电场的散度▽·E等于0了,那么就没有电场了。

其实,电场的散度等于0,只是告诉你通过包含这一点的无穷小曲面的电通量为0,电通量为0不代表电场E为0啊,因为我可以进出这个曲面的电通量(电场线的数量)相等。

这样有多少正的电通量(进去的电场线数量)就有多少负的电通量(出来的电场线数量),进出正负抵消了,所以总的电通量还是0。

于是,这点的散度▽·E就可以为0,而电场强度E却不为0。

所以这个大家一定要区分清楚:电场E的散度为0不代表电场E为0,它只是要求电通量为0而已,磁场也一样。

这样我们再来审视一下真空中(ρ=0,J=0)的麦克斯韦方程组:

方程1和2告诉我们真空中电场和磁场的散度为0,方程3和4告诉我们电场和磁场的旋度等于磁场和电场的变化率。

前两个方程都是独立的描述电和磁,后两个方程则是电和磁之间的相互关系。

我们隐隐约约也能感觉到:

如果要推导出电磁波的方程,你肯定得把上面几个式子综合起来,因为波是要往外传的,而你上面单独的方程都只是描述某一点的旋度或者散度。

有一个很简单的把它们都综合在一起的方法:对方程3和方程4两边同时再取一次旋度。

方程3的左边是电场的旋度▽×E,对它再取一次旋度就变成了▽×(▽×E);

方程3的右边是磁场的变化率,对右边取一次旋度也可以得到磁场B的旋度▽×B,这样不就刚好跟方程4联系起来了么?

对方程4两边取旋度看起来也一样,这看起来是个不错的兆头。

可能有些朋友会有一些疑问:你凭什么对方程3和4的两边取旋度,而不取散度呢?

如果感兴趣你可以两边都取散度试试,你会发现电场E的旋度取散度▽·(▽×E)的结果恒等于0。

这一点你看方程3 的右边会更清楚,方程3的右边是磁场的变化率,你如果对方程左边取散度,那么右边也得取散度,而右边磁场的散度是恒为0的(▽·B=0就是方程2的内容)。

这样就得不出什么有意义的结果,你算出0=0能得到什么呢?

所以,我们现在的问题变成了:如何求电场E的旋度的旋度(▽×(▽×E))?

因为旋度毕竟和叉乘密切相关,所以我们还是先来看看叉乘的叉乘。

11叉乘的叉乘

在积分篇和微分篇里,我已经跟大家详细介绍了矢量的点乘和叉乘,而且我们还知道点乘的结果A·B是一个标量,而叉乘的结果A×B是一个矢量(方向可以用右手定则来判断,右手从A指向B,大拇指的方向就是A×B的方向)。

而点乘和叉乘都是矢量之间的运算,那么A·B的结果是一个标量,它就不能再和其它的矢量进行点乘或者叉乘了。

但是,A×B的结果仍然是一个矢量啊。

那么按照道理它还可以继续跟新的矢量进行点乘或者叉乘运算,这样我们的运算就可以有三个矢量参与,这种结果我们就称为三重积。

A·(B×C)的结果是一个标量,所以这叫标量三重积;A×(B×C)的结果还是一个矢量,它叫矢量三重积。

标量三重积A·(B×C)其实很简单,我在微分篇说过,两个矢量的叉乘的大小等于它们组成的平行四边形的面积,那么这个面积再和一个矢量点乘一把,你会发现这刚好就是三个矢量A、B、C组成的平行六面体的体积。

电磁波是谁预言谁证实的,电磁波是谁预言的是谁证实的(18)

这个大家对着上面的图稍微一想就会明白。而且,既然是体积,那么你随意更换它们的顺序肯定都不会影响最终的结果。

我们真正要重点考虑的,还是矢量三重积。

矢量三重积A×(B×C),跟我们上面说电场E旋度的旋度▽×(▽×E)形式相近,密切相关。

它没有上面标量三重积那样简单直观的几何意义,我们好像只能从数学上去推导,这个推导过程,哎,我还是直接写结果吧:

A×(B×C)=B(A·C)-C(A·B)。

结果是这么个东西,是不是很难看?嗯,确实有点丑。

不过记这个公式有个简单的口诀:远交近攻。什么叫远交近攻呢?

当年秦相范雎,啊不,A×(B×C)里的A距离B近一些,距离C远一些,所以A要联合C(A·C前面的符合是正号)攻打B(A·B前面的符号是负号),这样这个公式就好记了,感兴趣的可以自己去完成推导的过程。

12旋度的旋度

有了矢量三重积的公式,我们就来依样画葫芦,来套一套电场E的旋度的旋度▽×(▽×E)。

我们对比一下这两个式子A×(B×C)和▽×(▽×E),好像只要把A和B都换成▽,把C换成E就行了。

那么,矢量三重积的公式(A×(B×C)=B(A·C)-C(A·B))就变成了:

▽×(▽×E)=▽(▽·E)-E(▽·▽)。

嗯,▽(▽·E)表示电场E的散度的梯度,散度▽·E的结果是一个标量,标量的梯度是有意义的,但是后面那个E(▽·▽)是什么鬼?

两个▽算子挤在一起,中间还是一个点乘的符号,看起来好像是在求▽的散度(▽·),可是▽是一个算子,又不是一个矢量函数,你怎么求它的散度?

而且两个▽前面有一个电场E,怎么E还跑到▽算子的前面去了?

我们再看一下矢量三重积的公式的后面一项C(A·B)。

这个式子的意思是矢量A和B先进行点乘,点乘的结果A·B是一个标量,然后这个标量再跟矢量C相乘。

很显然的,如果是一个标量和一个矢量相乘,那么这个标量放在矢量的前面后面都无所谓(3C=C3),也就是说C(A·B)=(A·B)C。

那么,同样的,E(▽·▽)就可以换成(▽·▽)E,而它还可以写成▽²E,这样就牵扯出了另一个大名鼎鼎的东西:拉普拉斯算子▽²。

13拉普拉斯算子▽²

拉普拉斯算子▽²在物理学界可谓大名鼎鼎,它看起来好像是哈密顿算子▽的平方,其实它的定义是梯度的散度。

我们假设空间上一点(x,y,z)的温度由T(x,y,z)来表示,那么这个温度函数T(x,y,z)就是一个标量函数。

我们可以对它取梯度▽T,因为梯度是一个矢量(梯度有方向,指向变化最快的那个方向),所以我们可以再对它取散度▽·。

我们利用我们在微分篇学的▽算子的展开式和矢量坐标乘法的规则,我们就可以把温度函数T(x,y,z)的梯度的散度(也就是▽²T)表示出来:

电磁波是谁预言谁证实的,电磁波是谁预言的是谁证实的(19)

再对比一下三维的▽算子:

电磁波是谁预言谁证实的,电磁波是谁预言的是谁证实的(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.