嘧啶核苷酸的从头合成是先合成UMP,UMP再衍生得到CMP和dTMP。嘧啶环比较简单,所以合成步骤较少,也没有分支。相对来说,嘌呤环的合成过程中,组氨酸合成放出AICAR可以看作一个支路。
UMP合成途径。引自themedicalbiochemistrypage
UMP的合成中用到两个熟悉的分子:氨甲酰磷酸(CP)和磷酸核糖焦磷酸(PRPP)。前者是尿素合成的中间物,后者在嘌呤和组氨酸、色氨酸合成中均有参与。不过这两个分子的使用与以前稍有不同。
PRPP在嘌呤合成中作为起始“载体”,整个嘌呤环都是在磷酸核糖之上合成的。而在UMP的合成中,磷酸核糖后期才加入,嘧啶环的合成是从CP开始的。这里催化CP合成的酶是氨甲酰磷酸合成酶2(CPS-2),位于细胞质。尿素循环中的是CPS-1,位于线粒体。
细胞质中的氨甲酰磷酸合成。引自themedicalbiochemistrypage
CPS2催化谷氨酰胺与碳酸氢根生成氨甲酰磷酸,消耗2个ATP。与CPS1相比,直接消耗相同,但CPS1的底物是氨气。因为谷氨酰胺的合成还需要消耗ATP,所以这个反应消耗更高。其优点在于摆脱了对氨的依赖,可以在氨浓度很低的细胞质中进行。
对人体来说,两个CPS还有一点不同:CPS1是一个独立蛋白,而CPS2是一个三功能蛋白CAD的一部分。CAD将催化此途径前三步反应的酶活性融合在一条肽链中,即包含CPSase、ATCase(天冬氨酸转氨甲酰酶)和DHOase(二氢乳清酸酶),故称为CAD。
人体CAD基因结构与反应机制。引自Structure. 2016 Jul 6;24(7):1081-94.
这种多酶融合体可以提高催化效率,也是一种进化的趋势。哺乳动物的脂肪酸合酶(FAS)也是这样。对于原核生物中的ATCase活性,有些生物是单独的催化亚基三聚体,有的生物则带有调节亚基或与DHOase相结合。