脱氧核糖核苷酸是干什么用的,脱氧核糖苷酸的作用和功效

首页 > 教育 > 作者:YD1662024-08-03 07:53:21

不同原核生物的ATCase结构。引自Structure. 2016 Jul 6;24(7):1081-94.


ATCase活性催化氨甲酰磷酸与天冬氨酸反应(氨甲酰磷酸可看作氨甲酰基的活性形式),生成氨甲酰天冬氨酸。PALA(N-膦酰基乙酰基-L-天冬氨酸)是ATCase过渡态类似物,所以可抑制CAD,是一种anti-tumoral drug。

DHOase活性催化氨甲酰天冬氨酸(CA)两端的羧基和氨基反应,生成闭环的二氢乳清酸(DHO)。DHO被二氢乳清酸脱氢酶(DHODH)催化脱氢,生成乳清酸(orotate)。乳清酸与PRPP生成乳清苷酸(OMP),再脱羧生成UMP。

后两步反应也是由一个双功能酶催化,其N端结构域具有乳清酸磷酸核糖基转移酶活性,C端具有OMP脱羧酶活性,合称UMP合成酶(UMPS)。

尿嘧啶胺化可以生成胞嘧啶,但这个反应只能在NTP水平上进行。所以UMP先与2分子ATP反应生成UTP,然后在CTP合成酶(CTPS)催化下与谷氨酰胺和ATP反应,生成CTP。

脱氧核糖核苷酸是干什么用的,脱氧核糖苷酸的作用和功效(5)

CTP的合成。引自themedicalbiochemistrypage


合成DNA所需的脱氧核糖核苷酸都是由相应的核糖核苷二磷酸还原得到的,即由NDP还原生成dNDP。催化这个反应的核糖核苷酸还原酶(Ribonucleotide reductase,RNR)是DNA合成和修复的关键酶,在调节DNA合成的总速率中起关键作用。

RNR是通过自由基机制催化的,根据产生自由基的方式分为三种类型,第一类来自酪氨酸残基,第二类来自腺苷钴胺素,第三类来自糖基。RNR完成催化后,其关键巯基生成了二硫键,需要将其还原为自由巯基。最终电子供体均为NADPH,但中间的电子传递有两个系统,即硫氧还蛋白系统(TRX)和谷氧还蛋白系统(GRX)。目前推测两个系统之间可以互为备份(World J Biol Chem. 2014 Feb 26; 5(1): 68–74.)。

脱氧核糖核苷酸是干什么用的,脱氧核糖苷酸的作用和功效(6)

核糖核苷酸还原酶系统。引自themedicalbiochemistrypage


DNA需要的胸腺嘧啶是由尿嘧啶甲基化生成的,在dUMP上进行。这个反应由胸腺嘧啶核苷酸合成酶(TYMS)催化,以甲叉四氢叶酸为甲基供体,生成dTMP。转甲基后四氢叶酸(THF)生成了二氢叶酸(DHF),需要由二氢叶酸还原酶(DHFR)催化其再生。dUMP可由UDP还原、脱磷酸生成,也可由dCMP脱氨生成。

脱氧核糖核苷酸是干什么用的,脱氧核糖苷酸的作用和功效(7)

dTMP的合成。引自themedicalbiochemistrypage


嘧啶核苷酸合成也有补救途径。尿嘧啶可与PRPP生成UMP,也可与1-磷酸核糖生成尿苷,再被尿苷激酶催化生成UMP。胞嘧啶不能与PRPP反应,但胞苷可被尿苷激酶催化生成CMP。碱基和脱氧核糖-1-磷酸可由磷酸化酶合成脱氧核糖核苷,再由脱氧核糖核苷激酶生成脱氧核糖核苷酸。

一些辅酶也属于核苷酸衍生物。NAD的合成是由烟酸与PRPP反应,生成烟酸单核苷酸,再与ATP缩合生成烟酸腺嘌呤二核苷酸,最后由谷氨酰胺酰胺化生成NAD。NAD激酶可催化其生成NADP。

FAD的合成是由黄素先与ATP生成黄素单核苷酸(FMN),再与ATP生成FAD。辅酶A的合成是由泛酸先与ATP生成4-磷酸泛酸,再与半胱氨酸缩合并脱羧生成4-磷酸泛酰巯基乙胺,与ATP缩合成脱磷酸辅酶A,最后被ATP磷酸化成辅酶A。

上一页12末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.