中国是世界四大文明古国之一,也是一个文化灿烂的国度。在中国古代,除了有诗词、文章等出名,数学也在很长一段时间是遥遥领先世界的。
那么今天小编就来盘点一下,中国历史上十位最著名的数学家,我们一起来了解下吧!
注:本排名为非正式的排名,仅供参考,不喜勿喷。
十、朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。
朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。
主要著作是《算学启蒙》与《四元玉鉴》。 朱世杰在《算学启蒙》中明确提出正负数乘法法则,给出倒数的概念和基本性质,概括出若干新的乘法公式和根式运算法则,总结了若干乘除捷算口诀,并把设辅助未知数的方法用于解线性方程组。
《四元玉鉴》的主要内容是四元术,即多元高次方程组的建立和求解方法。秦九韶的高次方程数值解法和李冶的天元术都被包含在内。
在宋元时期的数学精英中,朱世杰的工作具有特殊重要的意义。如果把诸多数学家比作群山,则朱世杰是最高大、最雄伟的山峰。
如果站在朱世杰数学思想的高度俯瞰传统数学,会有“一览众山小”之感。朱世杰工作的意义就在于总结了宋元数学,使之在理论上达到新的高度。
这主要表现在以下三个领域:首先是方程理论,在列方程方面,蒋周的演段法为天元术作了准备工作,他已具有寻找等值多项式的思想,洞渊马与信道是天元术的先驱,但他们推导方程仍受几何思维的束缚,李冶基本上摆脱了这种束缚,总结出一套固定的天元术程序,使天元术进入成熟阶段。
在解方程方面,贾宪给出增乘开方法,刘益则用正负开方术求出四次方程正根,秦九韶在此基础上解决了高次方程的数值解法问题。至此,一元高次方程的建立和求解都已实现。而线性方程组古已有之,所以具备了多元高次方程组产生的条件。
因为李德载的二元术和刘大鉴的三元术相继出现,所以朱世杰的四元术正是对二元术、三元术的总结与提高。由于四元已把常数项的上下左右占满,方程理论发展到这里,显然就告一段落了。从方程种类看,天元术产生之前的方程都是整式方程。
九、梅文鼎(1633—1721),字定九,号勿庵,汉族,宣州(今安徽省宣城市宣州区)人。清初天文学家、数学家,为清代“历算第一名家”和“开山之祖”,被世界科技史界誉为与英国牛顿和日本关孝和齐名的“三大世界科学巨擘”。
梅文鼎毕生致力于复兴中国传统的天文和算学知识,并且推进中西天文学的融合。梅文鼎在著作中,再次阐明了已失传的古代历理。
传统天文学中的许多方法,他又写了《交食》《七政》《五星管见》等书介绍第谷式的西方天文学。梅文鼎在另一部著作《历学疑问》中,论述了中西历法的异同,并将许多西方天文知识纳入中国古代学术体系中,如他称西学的“地球寒暖有五带”,即《周髀算经》中的“七衡六间说”。
他自撰的《勿庵历算书目》有天文数学著作七十余种,包括数学著作二十余种。《梅氏丛书辑要》六十卷,其中数学著作十三种共四十卷等。
梅文鼎一生著述很多,绝大部分是天文、历算和数学著作。 他之天文历算和数学著作大致可分为五类: 一是对古代历算的考证和补订, 二是将西方新法结合中国历法融会一起的阐述; 三是回答他人的疑问和授课的讲稿; 四是对天文仪器的考察和说明; 五是对古代方志中天文知识的研究。总计达66种。其数学著作达26种,冶中西数学于一炉,集古今中外之大成,总名之曰《中西算学通》。
梅文鼎专心致力于天文数学的研究,他系统考察古今中外历法,又介绍欧洲数学,综合研究中西历算,梅文鼎介绍和发展来自西方的数学知识方面起了重要作用。对后世颇有影响。
梅文鼎最重要的贡献是在数学方面,他写了20多种数学著作。将中西方的数学进行了融会贯通,对清朝数学的发展起了推动作用。
逝世之后,后人将其历法、数学著述汇为《梅氏丛书辑要》。诗文杂著则以《绩学堂文钞》、《绩学堂诗钞》刊行。
著作一览:《明史历志拟稿》、《历学疑问》、《古今历法通考》、《平三角举要》、《弧三角举要》、《几何补编》、《堑堵测量》、《几何通解》、《环中黍尺》、《历学骈枝》、《勿庵历算书目》。
八、徐光启(1562年-1633年),字子先,号玄扈,谥文定,上海人,万历进士,官至崇祯朝礼部尚书兼文渊阁大学士、内阁次辅。
徐光启在天文学上的成就主要是主持历法的修订和《崇祯历书》的编译。
编制历法,在中国古代一直是件关系民生的大事,它“授民以时”,因此在历代王朝都受到很大的重视。由于中国古代历法大都主张以实测为基础,在立法编制上很重视与数学计算的关系,因此中国古代历法还是比较精确的。但是到了明末,由于各种原因,历法开始明显地呈现出落后的现象。
明代施行的《大统历》,从内容上说实际只是元代《授时历》的继续,时间一长,就出现严重不准的状况。从成化年间起就开始陆续有人建议修改历法,但建议者轻则遭到拒绝,重则被治罪,理由是“占法未可轻变”、“祖制不可改”。直到崇祯二年徐光启以精密的西法推算出五月的朔日食,礼部才意识到旧历的不准,于是奏请开设历局,改历工作才被通行,并命徐光启督修历法,但后来由于清朝的侵入而被搁置,改历工作在明代实际并未完成。
在天文历法上,徐光启分别介绍了古代托勒密和当代第谷的两种地心说,通过对中国和西方历法的融会贯通主持编译了《崇祯历书》。书中采用的是第谷体系。不过这个体系仍然把地球当作太阳系的中心,认为日、月和诸恒星都在围绕地球运动,而五星则作绕日运动。
此外,徐光启在数学方面的最大贡献当推和利玛窦共同翻译了《几何原本》(前6卷)。徐光启提出了实用的“度数之学”的思想,同时还撰写了《勾股义》和《测量异同》两书。徐光启首先把“几何”一词作为数学的专业名词来使用。《几何原本》的翻译,极大地影响了中国原有的数学学习和研究的习惯,改变了中国数学发展的方向,是中国数学史上的一件大事。