有哪些出名的数列,七种常用数列大全

首页 > 教育 > 作者:YD1662024-11-28 02:32:56

七、贾宪,11世纪前半叶中国北宋数学家。贾宪是中国十一世纪上半叶(北宋)的杰出数学家。曾撰《黄帝九章算法细草》(九卷)和《算法古集》(二卷),都已失传。据《宋史》记载,贾宪师从数学家楚衍学天文、历算,著有《黄帝九章算法细草》、《释锁算书》等书。

贾宪著作已佚,但他对数学的重要贡献,被南宋数学家杨辉引用,得以保存下来。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。

而贾宪的主要贡献是创造了“贾宪三角”和“增乘开方法”。增乘开方法即求高次幂的正根法。目前中学数学中的综合除法,其原理和程序都与它相仿。

增乘开方法比传统的方法整齐简捷,又更程序化,所以在开高次方时,尤其显出它的优越性.增乘开方法的计算程序大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。

有哪些出名的数列,七种常用数列大全(5)

六、秦九韶(1208年-1268年),字道古,汉族,祖籍鲁郡(今河南省范县),出生于普州(今资阳市安岳县)。南宋著名数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。

绍定二年(1229)十月,秦九韶擢郪县县尉,绍定四年(1231)八月,秦九韶参与魏了翁平抑泸州蛮夷,葺其城楼橹雉堞,绍定五年(1232)八月乙丑进士,绍定六年,秦九韶在魏了翁带领吴潜等督视潼川府路、成都府路时认识吴潜,魏了翁和吴潜同秦九韶去拜望病中的许奕。

端平三年(1236)一月,秦九韶擢升湖北蕲州(今湖北蕲春县)通判,嘉熙元年(1237)年秋,秦九韶知和州(今安徽和县)。

嘉熙二年(1238),秦九韶回临安丁父忧,秦九韶在杭州丁父忧期中,发现西溪两岸的群众过河很不方便,在西溪上设计修建一座桥,名“西溪桥”,数学家朱世杰为纪念秦九韶,将桥命名为“道古桥”。

嘉熙三年(1239),秦九韶在杭州处理完父亲的后事之后,便和母亲、妻子回到湖州西门外父亲早年备置的宅第,继续丁父忧。秦九韶在湖州丁父忧期中,与知庆元府(浙江宁波)吴潜交尤稔,着手改建父亲备置的住宅。淳祐三年六月,吴潜回湖州丁母忧,秦九韶与被夺官的吴潜交往更是密切。淳祐四年(1244),秦九韶以通直郎出任建康(南京)府通判,十一月,秦九韶丁母忧,解官离任,回湖州为近八旬的母亲守孝。

他曾在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数学九章》,并创造了“大衍求一术”。被称为“中国剩余定理”。而其中他所论的“正负开方术”,还被称之为“秦九韶程序”。

此时,吴潜也在湖州丁母忧,两人交往甚犹。淳祐八年(1248),《数学九章》得荐于朝。

淳祐九年(1249),目录学家陈振孙,在编书目时向秦九韶请教,淳祐十年年(1250),秦九韶卸任建康通判,出任苏州州守。宝祐二年(1254),九韶出任江宁(江苏南京)府知府、沿江制置司参议官,管理江南十府粮道,宝祐四年去职。

宝祐六年(1258),秦九韶由贾似道荐于李曾伯为琼州守,凡数月去之。开庆元年(1259)十月,吴潜第二次入相,秦九韶有江东(江苏南京)议幕之除。又除司农丞前去平江(府治在今苏州市)措置米餫,俱以事罢。景定元年(1260),秦九韶知临江军(江西清江县西临江镇,南宋为临江军,辖清江、新喻、等县)。

景定二年(1261)六月,秦九韶广东梅州知军州事。咸淳四年(1268)二月,秦九韶在梅州治政近六年左右,得知朝廷为吴潜追复爵禄,了却心中惦念的沉冤,在梅州辞世,时年六十一岁。

秦九韶一生精研星象、音律、算术、诗词、弓、剑、营造之学,1247年完成著作《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的数值解的算法——正负开方术。

秦九韶的一生所做出的贡献,对我国甚至是世界上的数学方面来说,可以算是少有的奇人之一了。历史上对他的评价就是“伟大的数学家”。

主要成就:秦九韶算法——秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方则被称作霍纳算法。它也是中国古代著名和伟大的数学家、中世纪的数学泰斗---秦九韶的算法理论之一。

秦九韶算法具体是将一种将一元n次多项式的求值问题转化为n个一次式的算法。它的解答方法大大简化了整个的计算过程,即便是在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。

有哪些出名的数列,七种常用数列大全(6)

五、祖暅[gèng](456年—536年),一作祖暅之,字景烁,范阳遒县(今河北涞水)人。中国南北朝时期数学家、天文学家,祖冲之之子。同父亲祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式,并据此提出了著名的“祖暅原理”。

祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。

祖冲之去世后,他在梁朝天监三年(公元504年)、八年、九年先后三次上书,建议采用他父亲编制的《大明历》,终于使父亲的遗愿得以实现。

祖暅的主要工作是修补编辑他父亲的数学著作《缀术》。他运用祖暅原理和由他创造的开立圆术,发展了他父亲的研究成果,巧妙地证得球的体积公式。

祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。该原理在西方直到十七世纪才由意大利数学家卡瓦列利(Bonaventura Cavalieri)发现,比祖暅晚一千一百多年。祖暅是我国古代最伟大的数学家之一。

祖暅还有不少其他科学发现,例如肯定北极星并非真正在北天极,而要偏离一度多等等。算得这些结果,同他丰富的数学知识是分不开的。

由于家学渊源,祖暅从小也钻研数学。祖暅之有巧思入神之妙,当他读书思考时,十分专一,即使有雷霆之声,他也听不到。有一次,他边走路边思考数学问题,走着走着,竟然撞了对面过来的仆射徐勉。“仆射”是很高的官,徐勉是朝廷要人,倒被这位年轻小子碰得够戗,不禁大叫起来。这时祖暅之方才醒悟。梁朝与北魏打仗,失败,祖暅之被魏方扣留,安排住进了驿站,很受优待。

祖暅还结识了一位天文学的爱好者信都芳,两人常常在一起研讨天文、数学,十分投机。祖暅之把自己的学问毫无保留地教给信都芳,使他有很大进步。祖暅之在科学上也取得了重大成就,《大明历》就是由于他的建议,才被梁朝采用。有的记载说,《缀术》有他的研究成果。

他首次得出计算球体体积的公式,虽然比阿基米德晚了将近千年,但由于是与其父祖冲之运用独创的方法得出的,也不失是一种智慧结晶。他还研制了铜日圭、漏壶等精密观测仪器多种。

祖暅的儿子祖皓,续传家学,后来也成了数学家。祖暅将数学知识传给了信都芳、毛栖成和自己的儿子祖皓,他们三位后来都成了数学家。

有哪些出名的数列,七种常用数列大全(7)

四、张丘建,北魏清河(今邢台市清河县)人,我国著名的大数学家。著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。

生平简介:张丘建,北魏清河(今邢台市清河县)人,我国著名的大数学家。

他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程正整数解的典型问题,邱建对此有精湛和独到的见解。著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。

人物作品:《张丘建算经》

《张丘建算经》约成书于公元466-485年间,共三卷93题,包括测量、纺织、交换、纳税、冶炼、土木工程、利息等各方面的计算问题。其体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份宝贵的遗产。后世学者北周甄鸾、唐李淳风相继为该书做了注释。特别是唐代,经太史令李淳风注释整理,收入《算经十书》,成为当时算学馆先生的必读书目。

《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。「百鸡问题」是《张邱建算经》中的一个世界著名的不定方程问题,它给出了由三个未知量的两个方程组成的不定方程组的解。百鸡问题是:「今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱买鸡百只,问鸡翁母雏各几何。」依题意即解。

自张邱建以後,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。

有哪些出名的数列,七种常用数列大全(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.