整个过程,文摘菌一边黑人问号脸一边笑到拍桌子。
有网友就指出,这波反讽竟然“翻译出了本质”。
还有网友“太喜欢了所以拼了一首诗”,大家可以猜猜每句话对应到的原文是什么?
然后,再来对对答案,看看整本《陈涉世家》都被AI翻译成了什么样子?
1 机器翻译为何如此困难?
其实不管是语种互译,还是古文翻译,都是机器翻译的类别之一。
但是,如果机器翻译翻车的情况持续发生,我们还能相信它吗?
先别急,我们从NMT(neural machine translation,神经网络机器翻译)的诞生开始讲起,看看机器翻译到底是个什么东西。
2013年,Nal Kalchbrenner和Phil Blunsom提出了一种用于机器翻译的新型端到端编码器-解码器结构。该模型可以使用卷积神经网络(CNN)将给定的一段源文本编码成一个连续的向量,然后再使用循环神经网络(RNN)作为解码器将该状态向量转换成目标语言。
这一研究成果的发布可以说是标志着NMT的诞生,虽然在那之后也有不少研究者进行改进,但是仍然缺乏对模型的理解。比如,经常出现的问题包括但不限于训练和解码过程缓慢;对同一个词的翻译风格不一致;翻译结果存在超出词汇表(out-of-vocabulary)的问题;黑箱的神经网络机制的可解释性很差;训练所用的参数大多数是根据经验选择的。
NMT和SMT对比
总的来说:不确定性是翻译中的一个核心挑战。
知己知彼百战百胜,想要根除这种不确定性,我们还需要知道它的来源。
在一篇论文中作者指出,在构建翻译的模型的时候,基本上有两种不确定性,一种是任务本身固有的不确定性,另一种是数据收集过程中存在的不确定性。
所谓内在的不确定性,是指不确定性的一个来源是一句话会有几种等价的翻译。因为在翻译的过程中或多或少是可以直译的,即使字面上有很多表达相同意思的方法。句子的表达可以是主动的,也可以是被动的,对于某些语言来说,类似于“the”“of”或“their”是可选择的。
除了一句话可以多种翻译这种情况外,规范性不足同样是翻译不确定的来源。另外,如果没有背景输入,模型通常无法预测翻译语言的时态或数字,因此,简化或增加相关背景也是翻译不确定性的来源。
而外在的不确定性,则是因为系统,特别是模型,需要大量的训练数据才能表现良好。为了节省时间和精力,使用低质量的网络数据进行高质量的人工翻译是常见的。这一过程容易出错,并导致数据分配中出现其他的不确定性。目标句可能只是源句的部分翻译,或者目标句里面有源句中没有的信息。
在一些加了copy机制的翻译模型中,对目标语言进行翻译的时候可能会完全或部分复制源句子。论文作者经过研究发现,即使copy机制很小,也能对模型预测产生较大的影响。
https://arxiv.org/pdf/1803.00047.pdf
2 机器翻译频繁翻车,微信谷歌无一幸免
去年3月,微信翻译的频繁翻车事件得到了人们的关注,机器翻译的不确定性同时也被更多人所了解。
目前,机器翻译领域主要使用的NMT架构都差不多,一方面问题出在解码器语言模型,使用的语料让它学习到了这些最大概率出现的词。微信团队在处理的过程中似乎没有对“特殊情况”进行处理,于是我们就能看到这样的翻译发生: