rsa加密原理总结,rsa加密解密用法

首页 > 经验 > 作者:YD1662022-10-30 02:20:01

2. 欧拉函数 φ

欧拉函数 :

给定任意正整数 n , 在小于等于 n 的正整数中 , 能与 n 构成互质关系的正整数个数. 复制代码

计算这个值的方式叫做欧拉函数,使用: φ(n) 表示

φ(8) 有 1,3,5,7 即是 φ(8) = 4

φ(7) 有 1,2,3,4,5,6 即是 φ(8) = 6

那么 φ(56) 是多少 ?

先别急着一个个去数 , 我们来看下 欧拉函数的特点 .

  1. 当 n 是质数的时候, φ(n) = n-1
  2. 当 n 可以分解成两个互质的整数之积,如 n = A*B 则 : φ(A*B)=φ(A)* φ(B)

因此 :

如果 N 是两个质数 P1 和 P2 的乘积则 φ(N) = φ(P1) * φ(P2) = (P1-1)*(P2-1)

那么显然 φ(56) = φ(7) * φ(8) = 4 * 6 = 24

而 φ(63) = φ(7) * φ(9) = (7-1) * (9-1) = 48

3. 欧拉定理

如果两个正整数 m 和 n 互质,那么 m 的 φ(n) 次方减去 1 ,可以被 n 整除。

rsa加密原理总结,rsa加密解密用法(5)

小提示: 关于定理 , 不需要我们去证明它 , 只用记住就好.

3.1 费马小定理

费马小定理 就是在欧拉定理的基础上 , 而当 n 为质数时 (φ(n)结果就是n-1 .)

那么 :

如果两个正整数 m 和 n 互质 , 且 n 是质数 ,那么 m 的 n-1 次方减去 1 ,可以被 n 整除。

rsa加密原理总结,rsa加密解密用法(6)

4. 公式转换

rsa加密原理总结,rsa加密解密用法(7)

rsa加密原理总结,rsa加密解密用法(8)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.