让小朋友自己去发现长方形的不同边长组合,并没有多么困难,而且还有摆弄火柴棍的乐趣。但是,引导小朋友自己去发现这其间的规律,就没有看上去那么简单了。我和非非玩这个游戏时,非非很快摆出了 12 根火柴棍可以拼出的三种长方形,也学会了用数方块的方法求出面积,他甚至能用简单的乘法口诀直接计算面积。
这时,我问非非什么样的长方形面积最大,什么样的长方形面积最小。非非很快发现了其中最明显的规律:长方形越扁,面积就越小;长方形越接近正方形,面积就越大。顺着非非的思路,我开始让非非把长方形垂直的一条边当做重点观察的对象:垂直的一条边只有 1 根火柴时,长方形面积是 5;有 2 根火柴时,面积增加到 8;有 3 根火柴时,面积是 9,最大;有 4 根火柴时,面积又缩小到了 8;有 5 根火柴时,面积缩小到了 5,最小。非非觉得这个有规律的变化过程特别好玩,他仿佛看到了一个清晰的映射关系。
于是,我在纸上画出格子。非非自己填表,把这个变化过程或者说映射规律记录下来:
接下来,将问题变化为 16 根火柴、20 根火柴、24 根火柴时,非非自己就能总结出长方形边长与长方形面积的所有对应关系以及变化趋势了。非非还特别注意到,随着长方形垂直一边的边长由小到大,长方形的面积先是从最小变化到最大,然后又从最大变化到最小。
我相信,小朋友能有机会观察这样的变化规律,能在类似游戏中总结输入与输出的映射关系,这在未来会是极有价值的一种思维财富。
概率是另一个和人工智能算法密切相关的数学领域。小朋友完全可以从一些最简单的概念,逐步了解和熟悉概率。比方说,小朋友玩硬币时,我就会有意跟他讲,扔硬币得到正面的概率是 50%,虽然每次扔硬币不一定得到正面,但扔得多了,得到正面的总次数和得到反面的总次数不会相差太多。过于抽象的概率概念,比如样本、分布、概率密度,跟小朋友肯定是讲不清的。但这不妨碍我们和小朋友一起玩有趣的概率游戏。
数学系毕业的 N 老师有一天来我们家做客,其间,他跟非非提到了「正态分布」的名词。非非就缠着我们问,到底什么是正态分布。要解释什么是正态分布,其实可以让小孩子自己做实验、自己去总结规律(这里不讨论二项分布与正态分布的近似关系,小朋友也没必要知道离散分布和连续分布的区别):
- 我们给非非找了 6 个一模一样的硬币。
- 每次同时扔 6 个硬币。
- 用 6 个硬币扔出硬币正面的个数,有 0 到 6 一共七种可能性。
- 我们让非非在黑板上罗列出 0 到 6 这七个数量值。
- 每扔一次硬币,非非就数一下有几个硬币是正面,然后,在对应的数量值上面添一道横线。
- 不停扔硬币,每次都记录结果,不断观察结果,总结规律。
小朋友可以从这个小游戏中领悟到至少三件事:
- 扔硬币次数比较少时,黑板上记录的图案差异性较大,很难总结规律——这说明,概率描述的是多次事件的统计规律,而不是一两次事件的个别规律。
- 扔硬币次数比较多时,黑板上的正态分布图形就自然呈现在那里,特别直观,小朋友很容易记住正态分布曲线(钟形曲线)的大致特征。
- 做实验的同时,如果勤于记录,并且有好的记录方法,比如表格法,比如图示法,就能更容易地总结出事物的内在规律。
非非的一个好习惯是看到正态分布曲线后,会追问一句:那么正态分布有什么用?这个时候,就是我们家长发挥特长,给小朋友当义务讲解员的时间了。我们可以跟小朋友讲,世界上很多事物的分布都大致符合正态分布规律,比如学生的考试成绩,人的身高,恒星的大小,某种植物的生长速度,等等。
当然,不必强求小朋友真的理解什么是「分布」,关键是小朋友能经常接触到这些常见的数学概念,知道生活中哪些事物与这些概念有关,未来他们在学数学的时候,就更容易建立起个人经验与科学认知之间的紧密关联。
记录、发现和预测:拿物理实验当游戏非非喜欢物理和化学实验,在学校就特爱上科学课。但他更多是从六七岁小朋友爱玩的天性出发,拿这些实验当游戏来喜欢,并不一定真喜欢探究其中的科学原理。家里缺乏实验装备,我总要费尽心思才能凑出一套可以做实验的「道具」来。
不过,只要有空,我还是愿意多带着非非玩,特别希望非非能从中体验到真正的科学思考过程——顺便推荐一个名叫「烧杯」(BEAKER)的手机 APP,非非在其中用化学试剂做出冒泡、沸腾乃至爆炸的效果,经常欢喜得手舞足蹈。
从实验中记录数据,从数据中总结发现规律,然后根据规律做出预测,再用新的实验来验证,这大概是数百年来现代科学发展过程的一个缩影。可是,该如何让小朋友理解或至少了解这样的科学思维逻辑呢?
非非喜欢听故事。有段时间,非非就总问我月亮为什么绕着地球转,地球为什么绕着太阳转的问题。我就从第谷建立天文台开始讲起,讲第谷在天文望远镜出现以前,如何改进天文观测仪器,得到空前精准的天体运行观测记录;第谷的记录又是如何被开普勒完善并加以总结,形成重要的行星运动三大定律;而牛顿又是如何从开普勒的行星运动定律出发,构建出伟大的万有引力定律;后人如何用万有引力定律精准预测天体运行,甚至发现新天体。非非肯定搞不清万有引力定律的数学表达,但他对定律背后的故事展现出了极大的兴趣。
听多了类似的故事,他会主动给他们班上的同学讲开普勒或是伽利略,有一次,他还在同学面前表演两个不同重量小球同时落地的实验。小朋友的表现欲特别可爱,完全可以成为他们持续探索的动力。
我其实更希望小朋友能从这些故事当中,体会到动手实验、记录数据、发现规律、预测和验证这个完整的科学链条是多么的重要。除了讲故事外,我也尽量通过游戏,让非非去体验「实验、记录、发现、预测和验证」这个基本过程。
小朋友大多爱玩水,浮力实验就很容易让小朋友上瘾:
- 找一个空盆子。
- 盆子里放一个装满水的敞口高瓶(圆柱形的花瓶最理想,某些高的凉水杯也可以)。
- 用一只空水杯当做漂浮物,把空水杯慢慢放进装满水的敞口高瓶,直到空水杯自己稳定地浮在高瓶中为止。从高瓶中溢出的水自然会流进盆子里。
- 找一个精确到克的厨房平板秤(一些妈妈在厨房称量食材、调料时会用到这种秤)。
- 取出空水杯,擦干,用秤称出空水杯的重量。
- 取出高瓶。称出溢出到盆子里的水的重量(这时还可以问一下小朋友,该如何称盆子里的水的重量呀?办法当然是连盆一起称一次,再单独称一下空盆子,但缺少生活经验的小朋友未必回答得好)。
- 让小朋友做记录,把空水杯的重量和溢出的水的重量写在纸上。
- 重复上面的实验三到五次,每次都记下两个数值。
通过不断实验,反复记录空水杯和溢出的水的重量,非非的实验记录纸上已经有了一个很不错的小表格。我鼓励非非观察这个表格并总结规律。他自己总结了两点:
- 每次记录的空水杯的重量基本都一样,只有一个记录偏差了 1 克(这里不严格区分质量单位和重量单位);但每次记录的溢出的水的重量,相差较多,最大的差距达到 6 克。
- 每次实验得到的溢出的水的重量都和空水杯的重量差不多,但又不是严格相等。溢出的水的重量总是比空水杯的重量略小。
接下来的讲解和引导就非常容易了。空水杯的重量存在个别偏差,这是测量误差,尤其是仪器误差。溢出的水的重量变化较大,除了测量误差外,也有部分溢出的水粘附在高瓶外壁,没法全部收集的原因——这也解释了为什么每次记录的溢出的水的重量总比空水杯的重量略小。
然后,我们就可以引出浮力定律,告诉小朋友,像空水杯这样浮在水面的静止物体,它排开的水的重量,正好等于它自身的重量。阿基米德发现浮力定律的故事嘛,肯定也是要给非非讲的,顺便还可以多讲些阿基米德的传说故事,反正非非爱听故事甚于爱做实验。
此外,我们还可以用浮力定律对新的实验做出预测,比如预测某个规则形状的均质漂浮物的吃水深度,然后再和小朋友一起用实验来验证。
钟摆实验要比浮力实验复杂一些。非非对钟摆实验的兴趣来源于故宫的钟表馆。看到许多精密的摆钟后,非非总在问摆钟为什么可以计时的问题。这时,一个标准的钟摆实验应该可以帮小朋友答疑解惑。
在家做钟摆实验,摆线最好用缝衣线,既足够轻,也不会被明显拉伸。摆锤可以用轻重不等的螺帽,体积小,方便拴线,质心也比较明显。摆可以提在手上,但最好是固定在横木或者门框上。在不同条件下,用手机做定时器,记录 30 秒内钟摆的摆动次数(一来一回记录为一次)。30 秒的时长既容易记录次数,也不会消磨小朋友的耐心。
钟摆实验的关键在于每次实验的条件设置和数据记录的方法。一定要和小朋友讨论三件事:
- 上一次实验和这一次实验,在条件上有什么不同?是摆线长度变了,还是摆锤重量变了,还是摆锤的起始高度变了?
- 一共有三种初始条件——摆线长度、摆锤重量和摆锤起始高度。为什么每次实验最好只改变其中的一个条件?
- 到底如何才能把每次实验的条件(摆线长度、摆锤重量、摆锤起始高度)以及每次实验的结果(30 秒内的摆动次数)清晰地记录下来?
通过这些讨论,爱动脑、爱动手的小朋友自然会学到画表格、记数据的方法。在家长提示下,小朋友也能了解到,只有每次改变一个初始条件,我们才比较容易判断实验结果的变与不变到底与哪个初始条件有关。
非非对钟摆实验的兴趣还不错,他可以自己总结出:摆锤的起始高度与实验结果基本无关;摆锤的重量与实验结果基本无关;摆线的长度越长,同一时间段内摆动的次数就越少,或者说,摆动一次要花的时间就越长;非非甚至通过不断改变摆线长度,找到了摆动周期接近 1 秒、接近 2 秒的不同长度值——他很快想到,这几种摆线长度是比较适合用来驱动摆钟的。