不过,对于如何看待微积分,还存在像上面这位博士一样的一类人,他们的看法在某种意义上略显偏激。这种人在学校里可能难以被认可,不过在社会中似乎能生存下去。
本书讲解微积分选择的是这位博士的立场。因为我认为,虽然会计算微积分更好,但最开始学习微积分时,重点并不在计算上。
数学家是擅长数学的人,所以他们也很擅长计算吧?不,不一定是这样的。令人意外的是,数学家不仅会有不少单纯的计算失误,而且也常常会在思路上出现错误。
创立了组合拓扑学的天才数学家亨利•庞加莱也是经常犯错误的,据说就连他的论文中也存在不少错误。
但是,庞加莱思考的方向在本质上是准确无误的。只要思考的方向正确,即使稍微出点儿差错,对整体而言也并不是致命的。在学校,考试之所以依据计算结果的正确与否来确定成绩,是因为根据思路来给分数比较困难。
我喜欢南方的国家,2010 年曾在印度生活了一年。在金奈(Chennai,旧称 Madras)的一所数理科学研究所做研究时,深深吸引我的不仅是印度这个国家,还有印度人的研究方法。
其中令人惊讶的是,印度的研究者不怎么计算。当然,并不是完全不计算,而是与计算相比,他们在思考上花费的时间更长。我甚至怀疑他们这样是不是为了节约纸。“只要有纸和铅笔能够做研究”是数学家的口头禅,但是印度人可能会笑道:“难道最重要的不是用脑子吗?”在印度的经历让我切身体会到,数学研究中使用的是头脑。
印度数学家是在头脑中计算的吗?毕竟他们可是一群能够背诵20×20 的乘法口诀表的人。你可能会认为,他们用心算来计算肯定是小菜一碟。
但是,事实并非如此。印度的数学家会凭感觉来思考。在进行最后计算之前,他们首先用感觉思考,寻找正确的解题思路,这个阶段非常重要。如果能在思考阶段找到正确思路,之后总会有办法解决计算问题。
同样,本书的侧重点也放在了“思考的要领”上,我认为这是微积分的本质。比如,第 1 章中几乎没有出现积分符号。你可能会担心,不用积分符号的话是否能够真正理解相关内容。其实,先在第 1 章中接触微积分的本质内容,第 2 章之后出现的公式、算式将会意外地变得易于理解。
略微谈点儿抽象的内容,其实微积分的本质在于方法。简单说,如果抓住思考的“要领”,那么就能轻而易举地理解复杂算式。思考的方向找对了,之后只要根据需求掌握计算技术就可以了。相反,如果不能掌握思考要领,直接从计算技术入手的话,微积分的学习便如同咀嚼沙子一般变成了苦涩的修行。
即便你对计算不是特别明白,也没必要在意;或者一点儿也不明白,也没有关系。让我们放松下来,轻松地去探索微积分的本质吧!
以下是该书的第一章第一节。
积分存在的意义
积分应用的基础
小学所学的图形面积、体积的计算,实际上是与积分世界相连通的。积分并不是高中教材中突然半路*出的“程咬金”,初等教育中相关内容的学习,已经为迈入积分世界做了充分的热身。
而对于微分,大部分人都感觉不是很熟悉。说起微分,就会提到“切线斜率”“瞬时速度”“加速度”,这些内容怎么理解
都很难懂。这些东西我们无法直接用眼睛看到,很难直观上去把握。
从历史上来看,积分比微分要更早出现。
积分法的起源是“测量图形的大小”。古时候图形长度、面积、体积的计算方法,通过口传心授得以流传,经过历代人的智慧的锤炼,进而发展成为现在的积分法。
探寻积分法诞生的历史,大致可以追溯到公元前1800年左右。公元前200年的阿基米德时代,在计算抛物线和直线围成的图形面积问题上,已经出现了与现在积分法十分相似的“穷举法”。积分的历史,还真是悠久。
到了12世纪,印度的婆什迦罗二世提出了积分法的“前身”方法。进入17世纪,牛顿综合了微分法和积分法,尝试从万有引力理论来推导天体的运动规律。
总之,从积分出现到微分诞生,至少有长达1300年的间隔。
积分之所以会较早出现,是因为人类需要把握那些可见的东西,例如计算物体的面积、体积等。
初等教育中的图形计算,通常只针对长方形、圆形等规规矩矩的图形。而现实情况中,这些知识往往难以直接去应用。
这是因为,现实世界中存在的物质,并非都是学校中学习的那些规则的形状。相反,那些规则的形状可以说只是例外或理想化的情况。所以,对人类而言,测量现实情况中各种复杂图形大小的技术非常必要。
日本小学的家政课会讲授乌冬面、土豆块等简易料理的烹饪方法。之所以特地在学校中讲授这些内容,是因为这些都是烹饪中的基础方法。实际上我们自己做菜时,多会在商店中购买成品的乌冬面,也基本不会频繁烹制土豆块。但是,如果掌握了这些基础烹饪方法的话,就能够烹制出更多复杂的菜品。例如,乌冬面的烹饪方法可以运用到面包、比萨或者意大利面中,从土豆块中学到的方法可以拓展到土豆沙拉或者油炸饼中。
如果把在小学初中学的长方形、圆形的知识比作乌冬面、土豆块,那么微积分就相当于面包、土豆沙拉等应用性料理。多亏有了积分法,人类才能够计算各种图形的面积和体积。使用积分,无论是多么奇怪的形状,只要下功夫就能够计算出结果,这真是巨大的进步。
将思考应用于实际,用自己的力量去推导面积、体积,这才是积分的乐趣,也是学习积分的真正意义。
所有图形都与长方形相通
图形的种类纷繁多样,其中面积计算最为简单的就是“长方形”了。
说到这里,大家是不是想起了小学时初学面积计算的情景?在图形面积计算中,三角形、平行四边形、梯形、圆形等图形都是放到长方形之后学习。长方形的面积仅用“长×宽”就可以计算,可以说是最简单、朴素的图形。顺便提一下,在数学世界中,正方形被看作是“一种特殊的长方形”。