OM-85显著改善慢阻肺合并慢支患者呼吸症状评分。将90例慢性支气管炎合并慢阻肺病患者随机分为A组(n=49)和B组(n=41),A组患者口服含7mg OM-85,B组患者接受相似的安慰剂胶囊,为期3个月,记录年急性加重率、症状评分和肺功能。与安慰剂治疗(B组)相比,OM-85(A组)治疗后患者的咳嗽、痰液、呼吸困难及胸部听诊症状评分均有显著改善(P<0.05)。[65]
OM-85提升慢支伴慢阻肺病患者的痰液细菌清除率。细菌清除:相比安慰剂,OM-85治疗3个月后,期间未接受抗生素治疗的患者痰液中细菌清除率也显著更高(P<0.01)。OM-85治疗后,16例未接受抗生素治疗的患者中有11例的痰培养转阴。安慰剂治疗后,所有患者痰培养均未转阴。[65]
再看看另一个免疫调节剂匹多莫德。BODE指数评分:为四种因素参与的多维评价系统,即体质量指数、气流阻塞程度、呼吸困难及运动能力,分数越高,患者状况越差;6MWD:患者于6分钟内尽可能快地在室内一条长30m的道路上往返的距离。一项研究纳入27 例有长期吸氧指征的慢阻肺病稳定期患者,在常规治疗基础上予以匹多莫德800 mg,1 次/d,共60d,联合每日家庭氧疗,共治疗1年,观察匹多莫德联合长期氧疗治疗1年后的慢阻肺病急性加重和症状较治疗前的变化。开始治疗1年后,匹多莫德联合长期氧疗组慢阻肺病患者的症状和活动能力相比治疗前得到改善,急性加重的次数减少。结论显示,匹多莫德可改善稳定期慢阻肺病症状、减少急性加重的发作次数。[66]
胸腺肽也有助于改善老年慢阻肺患者的肺功能和生活质量。图左的研究选取2015年1月2017年1月老年慢阻肺急性加重期患者40例作为研究对象,将其随机分为两组,各20例,其中对照组采用抗生素治疗,治疗组采取胸腺肽联合抗生素治疗,观察两组患者的治疗效果。说明,胸腺肽α1联合抗生素组的老年慢阻肺病患者生活质量显著高于对照组。图右的研究纳入60例老年慢阻肺病急性加重期患者,根据治疗方案不同分为对照组与治疗组,每组30例。对照组患者接受常规对症治疗,治疗组患者在对照组基础上同时给予胸腺肽α1辅助治疗,旨在探讨老年慢阻肺病急性加重患者在对症治疗基础上辅以胸腺肽α1对病情的干预效果。结果显示,胸腺肽α1辅助治疗组的老年慢阻肺病患者肺功能显著高于对照组。[67、68]
总结:呼吸道是人体免疫系统的最前沿,慢性呼吸系统疾病患者存在固有和适应性免疫功能受损,易诱发呼吸道感染;慢阻肺患者的免疫失衡导致对细菌感染的易感性增加,同时慢阻肺患者常常合并气道菌群失调,增加急性加重风险;细菌和病毒感染是慢阻肺患者急性加重的主要诱因,预防呼吸道感染是慢阻肺长期管理中重要的一环;免疫治疗有效针对慢阻肺患者的免疫功能受损,可显著减少COPD急性加重,改善呼吸道症状、肺功能和生活质量。[25-30、40-43、47、64、66、67]
参考文献
1. Wang C, Xu J, Yang L, etal. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross‐sectional study[J]. Lancet, 2018, 391(10131): 1706‐1717.DOI: 10.1016/S0140‐6736(18)30841‐9.
2. 周玉民, 王辰, 姚婉贞, 等.我国7省市城区40岁及以上居民支气管扩张症的患病情况及危险因素调查 [J] . 中华内科杂志,2013,52( 05 ): 379-382.DOI: 10.3760/cma.j.issn.0578-1426.2013.05.006
3. Zhang H, Dong L, Kang Y K, et al. Epidemiology of chronic airway disease: results from a cross-sectional survey in Beijing, China[J]. Journal of Thoracic Disease, 2018, 10(11): 6168.
4. Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010–15: a population-based study [J]. The Lancet Public health, 2019, 4(9): e473 e81. DOI:10.1016/S2468-2667(19)30163-X.
5. Lina B, Georges A, Burtseva E, et al. Complicated hospitalization due to influenza: results from the Global Hospital Influenza Network for the 2017-2018 season [J]. BMC Infect Dis, 2020, 20(1): 465. DOI:10.1186/s12879-020-05167-4.
6. 慢性阻塞性肺疾病急性加重抗感染治疗中国专家共识编写组. 慢性阻塞性肺疾病急性加重抗感染治疗中国专家共识[J]. 国际呼吸杂志, 2019, 39(17):1281-1296.
7. Sethi S. Infectious etiology of acute exacerbations of chronic bronchitis[J]. Chest, 2000, 117(5): 380S-385S.
8. 成人支气管扩张症诊治专家共识[J]. 中华结核和呼吸杂志, 2012, 35(007):485-492.
9. Lim S, Lam D C L, Muttalif A R, et al. Asia Pacific family medicine, 2015, 14(1): 4.
10. Cui Y, Dai Z, Luo L, et al. Journal of thoracic disease, 2019, 11(4): 1303.
11. Feeney A S, Fendrick A M, Quintiliani R. The American journal of managed care, 2004, 10: 689-696.
12. Chalmers J D, Goeminne P, Aliberti S, et al. American journal of respiratory and critical care medicine, 2014, 189(5): 576-585.
13. Donaldson G C, Seemungal T A R, Bhowmik A, et al. Thorax, 2002, 57(10): 847-852.
14. Niewoehner D E. The American journal of medicine, 2006, 119(10): 38-45.
15. Soler-Cataluna J J, Martínez-García M Á, Sánchez P R, et al. Thorax, 2005, 60(11): 925-931.
16. Doll H, Grey-Amante P, Duprat-Lomon I, et al. Respiratory medicine, 2002, 96(1): 39-51.
17. Niederman M S, McCombs J S, Unger A N, et al. Clinical therapeutics, 1999, 21(3): 576-591.
18. Nurwidya F, et al. Tuberculosis and respiratory diseases, 2016, 79(1): 5-13.
19. Kim V, et al. American journal of respiratory and critical care medicine, 2013, 187(3): 228-237.
20. Hiemstra P S, et al. European respiratory journal, 2015, 45(4): 1150-1162
21. Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung[J]. Journal of inflammation research, 2009, 2: 1.
22. Gordon S B, Read R C. Macrophage defences against respiratory tract infections: The immunology of childhood respiratory infections[J]. British medical bulletin, 2002, 61(1): 45-61.
23. Brandstadter J D, Yang Y. Natural killer cell responses to viral infection[J]. Journal of innate immunity, 2011, 3(3): 274-279.
24. Chen K, Kolls J K. T Cell–mediated host immune defenses in the lung[J]. Annual review of immunology, 2013, 31: 605-633.
25. PRIETO A, REYES E, BERNSTEIN E D, et al. Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by glycophosphopeptical (inmunoferon)[J]. American journal of respiratory and critical care medicine, 2001, 163(7): 1578-1583.
26. Fietta A, Merlini C, De Bernardi P M, et al. Non specific immunity in aged healthy subjects and in patients with chronic bronchitis[J]. Aging Clinical and Experimental Research, 1993, 5(5): 357-361.
27. Freeman C M, Martinez C H, Todt J C, et al. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4 & CD8 T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood[J]. Respiratory research, 2015, 16(1): 94.
28. 陈小青, 何建如, 缪群. 慢性支气管炎患者急性发作和缓解期 T 淋巴细胞亚群的数量变化及意义[J]. 浙江医学, 2002, 24(2): 69-70.
29. Polosukhin V V, Cates J M, Lawson W E, et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease[J]. American journal of respiratory and critical care medicine, 2011, 184(3): 317-327.
30. Whitters D, Stockley R. Immunity and bacterial colonisation in bronchiectasis[J]. Thorax, 2012, 67(11): 1006-1013.
31. Hodkinson J P, Bangs C, Wartenberg-Demand A, et al. Low IgA and IgM is associated with a higher prevalence of bronchiectasis in primary antibody deficiency[J]. Journal of clinical immunology, 2017, 37(4): 329-331.
32. Guo-Parke H, et al. Frontiers in Immunology, 2020, 11.
33. Rovina N, et al. Mediators of Inflammation, 2013, 2013: 413735.
34. 韦佳, 付秀华. 世界最新医学信息文摘, 2018, v.18(16):96-97.
35. 张秋蕊, 等. 国际呼吸杂志, 2013, 33(1):44-47.
36. Bhat T A, et al. Annals of the American Thoracic Society, 2015, 12 Suppl 2(Suppl 2): S169-S175.
37. 程克斌, 等. 国际呼吸杂志, 2019, 39(6):457-461.
38. 李佩琼, 等. 国际呼吸杂志, 2007, 027(012):948-951.
39. Qiu F, et al. Oncotarget, 2017, 8(1): 268.
40. Knobloch J, et al. J Mol Med (Berl). Jun;97(6):817-828.
41. 2021 ATS abstract-A1391-Lower Airway Microbial Signatures in Early COPD
42. Wang Z, et al. Thorax, 2018:thoraxjnl-2017-210741.
43. Cukic V. The Mater Sociomed. 2013 Dec;25(4):226-9.
44. 刁文琦, 等. 中华结核和呼吸杂志, 2018, 041(012)982-985.
45. 慢性阻塞性肺疾病急性加重诊治专家组.慢性阻塞性肺疾病急性加重(慢阻肺急性加重)诊治中国专家共识(2017年更新版)[J]. 国际呼吸杂志, 2017, 37(14): 1041-1057.
46. Siddiqi A, Sethi S. Optimizing antibiotic selection in treating 慢阻肺 exacerbations[J]. International Journal of Chronic Obstructive Pulmonary Disease, 2008, 3: 31-44.
47. GOLD 2023
48. 慢性阻塞性肺疾病诊治指南(2021年修订版)
49. Chest, 2015, 147(4): 883-893.
50. 中国成人流行性感冒诊疗规范急诊专家共识 [J] 中华急诊医学杂志,2019,28(10): 1204-1217.
51. 肺炎链球菌性疾病相关疫苗应用技术指南(2012版)[J].中华流行病学杂志,2012,33(11):1101-1110.
52. 樊静, 丛舒, 王宁, 吕学莉, 等. 2014-2015年中国40岁及以上慢性阻塞性肺疾病患者肺炎疫苗接种状况. 中华流行病学杂志, 2020, 41(7): 1028-1033
53. GOLD 2021
54. 成人支气管扩张症诊治专家共识(2021版)
55. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识(2017)
56. Didierlaurent A M, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines[J]. Expert review of vaccines, 2017, 16(1): 55-63.
57. Dhama K, et al. International Journal of Pharmacology, 2015, 11(4): 253-290.
58. Curr Opin Allergy Clin Immunol, 2018, 18(3): 198-209.
59. Kearney S C, et al. Ann Allergy Asthma Immunol, 2015, 114(5): 364-9.
60. 洪建国. 中国实用儿科杂志, 2013,28(03): 165-168.
61. 各类药物说明书(略)
62. 王丽英等.中国全科医学. 2009,6:489-90.
63. 王爱飞等.中国药物与临床.2012,12(11):1457-58.
64. Pan L, et al. The Journal of Clinical Pharmacology, 2015, 55(10): 1086-1092.
65. Li J, et al. Chin Med J (Engl). 2004;Jun;117(6):828-834.
66. 唐拂晓. 中国实用医药, 2014(17).
67. 武兆山. 临床医药文献电子杂志 2018,5(14),153
68. 董慧君. 中国实用医药, 2018, v.13(24):14-16.
69. Yao S, Qin R, Song X, et al. Bacterial lysate add-on therapy in adult and childhood asthma: a systematic review and meta-analysis[J]. 2023.
专家介绍