各位同学,你们知道球体的表面积和体积公式吗?也许有的同学多学了一些知识可以直接说出来。但是如果让各位同学写出推导公式,又有多少人能写出呢?球体的一些通用公式大都是用微积分来推导的,今天我们就来讲一个不用微积分就能“算球”的好方法。
首先,抛弃了微积分这一曲线计算利器,我们的替代工具是:一点点相似三角形知识,一点点空间想象力,再加上中国古代数学家智慧的结晶——祖暅原理。
算个球的表面积!众所周知,球的表面积公式是 4πr2,正好是同半径圆形面积的 4 倍,这不禁让人浮想联翩,为什么正好是 4 倍呢?难道圆形面积和球体面积之间有什么不可告人的秘密?顺着这个思路下去你可能会觉得完全无从下手,感到弱小,可怜,又无助。
这也正是我初期经历的心路历程,直到我发现了另一个秘密:4πr2 正好是这个球外接圆柱的外围面积。
Credit: 3blue1brown
想象一下,如果把球表面划分小块,沿水平向四周投影,按理来说,这样投出的小块就可以正好铺满外面这个”圆筒”。因为圆筒的面积是圆周长乘上筒高:2πr*2r = 4πr2,和里面这颗球的表面积不谋而合!
就像下图右上角示意的那样,球上的小块被投影到圆筒上会变形,它们的宽度可能增大,而高度会相应变小。
Credit: 3blue1brown
小块可以从平视和俯视两个方向来观察。那我们就来看看,投影过程中,我们的小块到底经历了什么不为人知的变化。