后来,科学家基于爱因斯坦的广义相对论,哈勃的发现以及量子力学建立了一套标准宇宙模型,地基就是宇宙大爆炸理论。他们还预言了两个关键证据,结果也都被找到了。于是宇宙大爆炸理论也逐渐被学术界所接受。
根据宇宙大爆炸理论,我们知道,宇宙诞生于138亿年前,随后开始发生剧烈的膨胀。因此,我们在考虑光是否能够达到地球时,也需要把膨胀的效应带入进去。
如果带进去一计算,我们就会发现,可观测宇宙的半径可以达到461亿光年。那这其实距离465亿光年还是差了4光年。那这4光年又是咋来的呢?
其实上文我们一直都在说电磁波,或者说光的传播。但实际上,宇宙大爆炸之后,宇宙中充满了粒子,光子也被挤在其中,没有办法开始传播,这个情况一直持续到宇宙大爆炸后38万年。因此,461亿年的结果是按照宇宙大爆炸之后38万年,光子可以开始传播算起的,最早的38万年并没有计算在内。
可是我们其实可以利用引力波和中微子来观测这段时间的宇宙历史,因此,可观测宇宙也应该把这段时间也算上,并且也要考虑膨胀效应。
把上面的因素统统考虑进入后,我们就可以得到可观测宇宙的半径是465亿光年,直径也就是930亿光年了。
真实的宇宙有多大?可观测宇宙其实不是宇宙,而只是宇宙的一部分,而且是极其小的一部分。那问题来了,真实的宇宙到底有多大呢?
其实我们没有办法直接去测算这个尺度,不仅如此,宇宙其实是处于动态变化的,而不是固定不变的,因此,思考当下宇宙的大小其实意义不大,我们需要把时间因素也考虑进去,这样问题就变得极其复杂。
科学家换了一种方式,从宇宙的形状去思考的,如果宇宙是平坦的,那宇宙就应该是无限大的,如果宇宙是弯曲的,那它有可能是封闭的,也可能是无限大的。
根据如今的观测来看,宇宙在千分之六的精度上是平坦的,也就是说,宇宙可能是无限大的。但这里要多说一句,这个测算的结果其实误差还是比较大的,关于宇宙到底有多大,其实还需要后续更多的探测器所探测到的数据来判断。