概括的讲:
- 发送方通过使总线电平发生变化,将其信息传递到CAN总线上。
- 接收方通过监听总线电平,将总线上的消息读入自己的接收器。
所谓多主工作方式,指的是:总线上的所有节点没有主从之分,大家都处于平等的地位。反应在数据传输上,即是:在总线空闲状态,任意节点都可以向总线上发送消息。
Tips: <总线空闲状态>:当总线上的上出现连续的11位隐性电平,那么总线就处于空闲状态。也就是说对于任意一个节点而言,只要它监听到总线上连续出现了11位隐性电平,那么该节点就会认为总线当前处于空闲状态,它就会立即向总线上发送自己的报文。
至于为什么连续出现11位隐性电平,就可以判定 总线处于空闲状态,这个问题可以结合CAN协议的帧结构来进行理解。
在多主工作方式下:
- 最先向总线发送消息的节点获得总线的发送权;
- 当多个节点同时向总线发送消息时,所发送消息的优先权高的那个节点获得总线的发送权。
例如:Node_A和Node_B同时向总线发送各自的消息Msg_1和Msg_2,如果Msg_1的优先级比Msg_2高,那么Node_A就获得了总线的发送权。
在CAN协议中,所有的消息都以固定的帧格式发送。当多个节点同时向总线发送消息时,对各个消息的标识符(即ID号)进行逐位仲裁,如果某个节点发送的消息仲裁获胜,那么这个节点将获取总线的发送权,仲裁失败的节点则立即停止发送并转变为监听(接收)状态。
例如:Node_A和Node_B同时向总线发送各自的消息Msg_1和Msg_2,那么对Msg_1的ID号ID_1和Msg_2的ID号ID_2进行逐位仲裁,如果仲裁结果是:ID_1的优先级比ID_2高,那么Msg_1在仲裁中获胜,于是发出Msg_1这条报文的节点Node_A就获得了总线的发送权。同时,Msg_2在仲裁中失败,于是Node_B就转换到监听总线电平的状态。
这种仲裁机制既不会造成已发送数据的延迟,也不会破坏已经发送的数据,所以称为非破坏性仲裁机制。这种仲裁方式的实现机制参见本系列笔记的第二篇CAN协议数据帧与遥控帧中的介绍。
2.3 系统的柔性CAN总线上的节点没有“地址”的概念,因此在总线上增加节点时,不会对总线上已有节点的软硬件及应用层造成影响。
2.4 通信速度在同一条CAN线上,所有节点的通信速度(位速率)必须相同,如果两条不同通信速度总线上的节点想要实现信息交互,必须通过网关。
例如:汽车上一般有两条CAN总线:500kbps的驱动系统CAN总线和125kbps的舒适系统CAN总线,如果驱动系统CAN总线上的发动机节点要把自己的转速信息发送给舒适系统CAN总线上的转速表节点,那么这两条总线必须通过网关相连。
CAN总线可以实现一对一,一对多以及广播的数据传输方式,这依赖于验收滤波技术。验收滤波技术的实现机制参见本系列笔记的第二篇CAN协议帧结构中的介绍。
2.6 远程数据请求某个节点Node_A可以通过发送“遥控帧”到总线上的方式,请求某个节点Node_B来发送由该遥控帧所指定的报文。具体实现方式参见本系列笔记的第二篇CAN协议帧结构中的介绍。
2.7 错误检测、错误通知、错误恢复功能- 所有的节点都可以检测出错误(错误检测功能);
- 检测出错误的节点会立即通知总线上其它所有的节点(错误通知功能);
- 正在发送消息的节点,如果检测到错误,会立即停止当前的发送,并在同时不断地重复发送此消息,直到该消息发送成功为止(错误恢复功能)。
节点能够判断错误的类型,判断是暂时性的数据错误(如噪声干扰)还是持续性的数据错误(如节点内部故障),如果判断是严重的持续性错误,那么节点就会切断自己与总线的联系,从而避免影响总线上其他节点的正常工作。
CAN通信的上述特点都是基于CAN协议所定义的多种帧结构来实现的,因此,在下一篇笔记对CAN的帧结构有了了解之后,再做进一步的详细解释。
3 CAN通信网络结构3.1 OSI基本参照模型实际上,CAN总线网络底层只采用了OSI基本参照模型中的数据链路层、传输层。而在CAN网络高层仅采用了OSI基本参照模型的应用层
3.2 CAN协议网络层次在CAN协议中,ISO标准只对数据链路层和物理层做了规定。对于数据链路层和物理层的一部分,ISO11898和ISO11519-2的规定是相同,但是在物理层的PMD子层和MDI子层是不同的。
在CAN总线,每一层网络中定义的事项如下: