九年级数学,一元二次方程,有一个非常重要的内容,就是根的判别式。
一元二次方程ax² bx c=0的根的判别式是,△=b²-4ac.
①若△=b²-4ac>0,则一元二次方程有两个不相等实数根。②若△=b²-4ac=0,则一元二次方程有两个相等的实数根。③若△=b²-4ac<0,则一元二次方程没有实数根。
反之,亦成立。
题型一,根据△的情况来判定方程的根的情况。例1题中,第1小题,原方程没有实数根,则△<0,得出m的取值范围。
再把m的取值范围,代入到第2小题的△=b²-4ac中,得出结论。
例2题,第1小题,不解方程,判定根的情况,是不是很简单?通过计算,△=b²-4ac=4>0,所以,原方程有两个不相等的实数根.
第2小题,原方程有一个根是x=3,代入原方程,即可求出m的值.
例3题,原方程有两个实数根,那么就有可能是两个相等,或者两个不相等实数根。所以,△=b²-4ac≥0,即可求出t的值。
后面要是学了二次函数的同学就很容易理解,暂时还没有学到二次函数的同学,可以暂时略过。