【解析】(1)由AD是边BC上的高,得到∠ADC=90°,根据等腰三角形的性质得到即可得到结论,∠EDC=15°;
(2)∠BAD=2∠EDC.
根据等腰三角形的性质得到∠B=∠C,∠ADE=∠AED,根据三角形外角的性质得到∠ADC=∠B ∠BAD,∠AED=∠C ∠EDC,于是得到结论.
模型四 遇到三角形一边垂线过这边中点时,可以考虑用垂直平分线的性质
7.(2019秋•沛县期中)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与PA相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断DE与DP的位置关系,并说明理由;
(2)若AC=6,BC=8,PA=2,求线段DE的长.
【解析】(1)DE⊥DP。
连接OD,根据等腰三角形的性质得到∠A=∠PDA,根据线段垂直平分线的性质得到EB=ED,于是得到结论;
(2)连接PE,设DE=x,则EB=ED=x,CE=8﹣x,根据勾股定理即可得到结论.则DE=4.75.
8.(2019春•张店区期末)如图,AB垂直平分线段CD(AB>CD),点E是线段CD延长线上的一点,且BE=AB,连接AC,过点D作DG⊥AC于点G,交AE的延长线与点F.
(1)若∠CAB=α,则∠AFG=______(用α的代数式表示);
(2)线段AC与线段DF相等吗?为什么?
(3)若CD=6,求EF的长.