开平方的方法和口诀,1-100的开平方口诀表图片

首页 > 生活 > 作者:YD1662022-11-20 12:29:30

刘徽用来说明开平方法的几何图形


看图,用一个正方形来表示被开方数,把它分为七个部分:黄甲幂(a²)、黄乙幂(b²)、黄丙幂(c²)、两个朱幂(ab)、两个青幂【(a b)c】。

看图得出正方形的面积为

(a b c)²=a² 2ab b² 2(a b)c c²=a² (2a b)b [2(a b) c]c

用图示方法来解例题,设a=200,b=30,c=5

得到55225=235²=200² (2×200 30)×30 [2×(200 30) 5]×5

遇到开方不尽的情况,可在整数方根后面带一个分数来表示所求方根的近似值。刘徽在《九章算术》的注里介绍了“不加借算”和“加借算”两种方法。

“不加借算”举例: =484 ,方法是设A=a² r,得

“加借算”举例: =114 ,方法是设A=a² r,得

这两种方法所得近似值较为精确,始创于我国三世纪。阿拉伯到了11世纪也有了同样的方法。另外,刘徽提出了开平方不尽可以续开小数的方法,与现代的方法类似,可以得到任意精确度的平方根近似值。

现代的笔算方法举例:先说定位。一个2位数的平方可能是3位数或4位数。一般而言,一个n位数的平方,是2n-1位数或2n位数。因为开方是乘方的逆运算,所以一个2n-1位数或2n位数的平方根是n位数。因此,很容易确定根的位数:从小数点开始,将被开方数向两边按两个数字一节来分节。根的小数点前后位数和小数点前后节数相等。


开平方的方法和口诀,1-100的开平方口诀表图片(5)

笔算12.5开平方


开平方的其他方法:珠算可以开平方、计算尺和查数学用表可以开平方。用不等式可以求根。用对数也可以。木匠有自己的方法来解决开平方和开立方的问题。以下重点介绍巴比伦人开平方的古法。

谈祥柏先生在《乐在其中的数学》一书中介绍了这个巴比伦人使用的古法。这个算法本质上属于迭代法。迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。这个算法很简单,只需要做除法和求算术平均值。举个例子,大家一看就会。

19是个质数,质数的平方根都是无理数。我们来看看怎么求19的平方根。请看下图:


开平方的方法和口诀,1-100的开平方口诀表图片(6)

迭代法计算19的平方根

再看下图,迭代法的精髓——自动纠错,一目了然。


开平方的方法和口诀,1-100的开平方口诀表图片(7)

迭代法的精髓——自动纠错


思考题:为什么可以自动纠错?

插播一段课文:小学《语文》五年级上册第24课

古人谈读书

敏而好学,不耻下问。

知之为知之,不知为不知,是知也。

默而识之,学而不厌,诲人不倦。

——《论语》

余尝谓:读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急。心既到矣,眼口岂不到乎? ——[宋]朱熹

盖士人读书,第一要有志,第二要有识,第三要有恒。有志则断不甘为下流;有识则知学问无尽,不敢以一得自足,如河伯之观海,如井蛙之窥天,皆无识者也;有恒者则断无不成之事。此三者缺一不可。

——[清]曾国藩


开平方的方法和口诀,1-100的开平方口诀表图片(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.