莱洛三角形画法
莱洛三角形滚动
你可能在某些场合见过下面这样的图形。画法也很简单,将3个等半径的圆以对称中心120度间隔相交而成的圆弧三角形,这种三角形看似胖胖憨憨,但是却有着不同寻常的性质。你用一对平行线在任何角度去测量其宽度,宽度都是一致的。这种三角形叫作莱洛三角形,这个定义由十九世纪的德国工程师Franz Reuleaux命名。也正是基于这个性质,莱洛三角形是井盖问题一个经典答案。
德国工程师 弗兰兹 莱洛
这个看似简单的胖三角,是最简单的等宽曲线,想象一下这个神奇的性质。在一个平面下安装几个这样的莱洛三角形作为轮子,任你移动平面,你也不会感觉到平面会有丝毫的起伏不稳。这个时候有同学又在疑问了,既然莱洛三角形任意移动宽度始终一致,那可不可以做车轮呢?答案是几乎不可以。为什么呢?
骑上莱洛三角形为轮子的自行车
虽然说莱洛三角形在任何旋转情况下,图形的宽度不会改变,然而其旋转中心点却在实时波动。想象一下,如果骑自行车用莱洛三角形做车轮,前后轮轴承的位置就是旋转中心,而这个中心总是忽高忽低,这样这个车可以骑,但是在平面上却有着骑跷跷板的感觉,仿佛感觉不是特别美好。不过有人却从这种怪异的胖三角形里得出灵感来,创造了一件伟大的发明。